Know-how sharing with stochastic innovations
We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agree...
Gespeichert in:
Veröffentlicht in: | The Canadian journal of economics 2001-05, Vol.34 (2), p.525-548 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 2 |
container_start_page | 525 |
container_title | The Canadian journal of economics |
container_volume | 34 |
creator | Eaton, B. Curtis Eswaran, Mukesh |
description | We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33 |
doi_str_mv | 10.1111/0008-4085.00087 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38265400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3131867</jstor_id><sourcerecordid>3131867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4637-85f6391f2db1e538866aa5b685c7e149931aadccdbef6e55dac18f20573f31713</originalsourceid><addsrcrecordid>eNqFkM9PwyAYhonRxDk9e_HQePBkNyiF0uNcZv2xaKIzHgmj1DK3MqGz7r-XWrODF78LX_I8L4EXgFMEB8jPEELIwhgyMmi3ZA_0EIlhSFIW7YPejh6CI-cWsB0Ee-DyvjJNWJomcKWwunoLGl2XgauNLIWrtQx0VZlPUWtTuWNwUIilUye_Zx-8XE9m45tw-pjdjkfTUMYUJyEjBcUpKqJ8jhTBjFEqBJlTRmSiUJymGAmRS5nPVUEVIbmQiBURJAkuMEoQ7oOL7t61NR8b5Wq-0k6q5VJUymwcxyyi_m_Qi-d_xIXZ2Mq_jaM0ZSnFOPbSsJOkNc5ZVfC11SthtxxB3lbH23J4W87PlvhE3CUavVTb_3Q-Ht1NuthZF1v4-uwuhhFGjLY47LB2tfraYWHfuacJ4a8PGc_w0yy7Is-c4m8qwobX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199896334</pqid></control><display><type>article</type><title>Know-how sharing with stochastic innovations</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Eaton, B. Curtis ; Eswaran, Mukesh</creator><creatorcontrib>Eaton, B. Curtis ; Eswaran, Mukesh</creatorcontrib><description>We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33</description><identifier>ISSN: 0008-4085</identifier><identifier>EISSN: 1540-5982</identifier><identifier>DOI: 10.1111/0008-4085.00087</identifier><identifier>CODEN: CJECBC</identifier><language>eng</language><publisher>Boston, USA and Oxford, UK: Blackwell Publishers, Inc</publisher><subject>Canada ; Cheating ; Competition ; Cooperation Economics ; Economic models ; Economic theory ; Enterprises ; Information sharing ; Innovation ; Innovations ; Knowledge ; Nash equilibrium ; Profit ; Ritual exchange ; Sharing ; Steel industry ; Stochastic models ; Stochastic processes ; Studies ; Technological innovation ; Temptation ; Trade</subject><ispartof>The Canadian journal of economics, 2001-05, Vol.34 (2), p.525-548</ispartof><rights>Copyright 2001 Canadian Economics Association</rights><rights>Canadian Economics Association 2001</rights><rights>Copyright Blackwell Publishers Inc. May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4637-85f6391f2db1e538866aa5b685c7e149931aadccdbef6e55dac18f20573f31713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3131867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3131867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Eaton, B. Curtis</creatorcontrib><creatorcontrib>Eswaran, Mukesh</creatorcontrib><title>Know-how sharing with stochastic innovations</title><title>The Canadian journal of economics</title><description>We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33</description><subject>Canada</subject><subject>Cheating</subject><subject>Competition</subject><subject>Cooperation Economics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Enterprises</subject><subject>Information sharing</subject><subject>Innovation</subject><subject>Innovations</subject><subject>Knowledge</subject><subject>Nash equilibrium</subject><subject>Profit</subject><subject>Ritual exchange</subject><subject>Sharing</subject><subject>Steel industry</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Technological innovation</subject><subject>Temptation</subject><subject>Trade</subject><issn>0008-4085</issn><issn>1540-5982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwyAYhonRxDk9e_HQePBkNyiF0uNcZv2xaKIzHgmj1DK3MqGz7r-XWrODF78LX_I8L4EXgFMEB8jPEELIwhgyMmi3ZA_0EIlhSFIW7YPejh6CI-cWsB0Ee-DyvjJNWJomcKWwunoLGl2XgauNLIWrtQx0VZlPUWtTuWNwUIilUye_Zx-8XE9m45tw-pjdjkfTUMYUJyEjBcUpKqJ8jhTBjFEqBJlTRmSiUJymGAmRS5nPVUEVIbmQiBURJAkuMEoQ7oOL7t61NR8b5Wq-0k6q5VJUymwcxyyi_m_Qi-d_xIXZ2Mq_jaM0ZSnFOPbSsJOkNc5ZVfC11SthtxxB3lbH23J4W87PlvhE3CUavVTb_3Q-Ht1NuthZF1v4-uwuhhFGjLY47LB2tfraYWHfuacJ4a8PGc_w0yy7Is-c4m8qwobX</recordid><startdate>200105</startdate><enddate>200105</enddate><creator>Eaton, B. Curtis</creator><creator>Eswaran, Mukesh</creator><general>Blackwell Publishers, Inc</general><general>Blackwell Publishers</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200105</creationdate><title>Know-how sharing with stochastic innovations</title><author>Eaton, B. Curtis ; Eswaran, Mukesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4637-85f6391f2db1e538866aa5b685c7e149931aadccdbef6e55dac18f20573f31713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Canada</topic><topic>Cheating</topic><topic>Competition</topic><topic>Cooperation Economics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Enterprises</topic><topic>Information sharing</topic><topic>Innovation</topic><topic>Innovations</topic><topic>Knowledge</topic><topic>Nash equilibrium</topic><topic>Profit</topic><topic>Ritual exchange</topic><topic>Sharing</topic><topic>Steel industry</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Technological innovation</topic><topic>Temptation</topic><topic>Trade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eaton, B. Curtis</creatorcontrib><creatorcontrib>Eswaran, Mukesh</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Canadian journal of economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eaton, B. Curtis</au><au>Eswaran, Mukesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Know-how sharing with stochastic innovations</atitle><jtitle>The Canadian journal of economics</jtitle><date>2001-05</date><risdate>2001</risdate><volume>34</volume><issue>2</issue><spage>525</spage><epage>548</epage><pages>525-548</pages><issn>0008-4085</issn><eissn>1540-5982</eissn><coden>CJECBC</coden><abstract>We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33</abstract><cop>Boston, USA and Oxford, UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/0008-4085.00087</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4085 |
ispartof | The Canadian journal of economics, 2001-05, Vol.34 (2), p.525-548 |
issn | 0008-4085 1540-5982 |
language | eng |
recordid | cdi_proquest_miscellaneous_38265400 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Canada Cheating Competition Cooperation Economics Economic models Economic theory Enterprises Information sharing Innovation Innovations Knowledge Nash equilibrium Profit Ritual exchange Sharing Steel industry Stochastic models Stochastic processes Studies Technological innovation Temptation Trade |
title | Know-how sharing with stochastic innovations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Know-how%20sharing%20with%20stochastic%20innovations&rft.jtitle=The%20Canadian%20journal%20of%20economics&rft.au=Eaton,%20B.%20Curtis&rft.date=2001-05&rft.volume=34&rft.issue=2&rft.spage=525&rft.epage=548&rft.pages=525-548&rft.issn=0008-4085&rft.eissn=1540-5982&rft.coden=CJECBC&rft_id=info:doi/10.1111/0008-4085.00087&rft_dat=%3Cjstor_proqu%3E3131867%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199896334&rft_id=info:pmid/&rft_jstor_id=3131867&rfr_iscdi=true |