Know-how sharing with stochastic innovations

We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Canadian journal of economics 2001-05, Vol.34 (2), p.525-548
Hauptverfasser: Eaton, B. Curtis, Eswaran, Mukesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 2
container_start_page 525
container_title The Canadian journal of economics
container_volume 34
creator Eaton, B. Curtis
Eswaran, Mukesh
description We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33
doi_str_mv 10.1111/0008-4085.00087
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38265400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3131867</jstor_id><sourcerecordid>3131867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4637-85f6391f2db1e538866aa5b685c7e149931aadccdbef6e55dac18f20573f31713</originalsourceid><addsrcrecordid>eNqFkM9PwyAYhonRxDk9e_HQePBkNyiF0uNcZv2xaKIzHgmj1DK3MqGz7r-XWrODF78LX_I8L4EXgFMEB8jPEELIwhgyMmi3ZA_0EIlhSFIW7YPejh6CI-cWsB0Ee-DyvjJNWJomcKWwunoLGl2XgauNLIWrtQx0VZlPUWtTuWNwUIilUye_Zx-8XE9m45tw-pjdjkfTUMYUJyEjBcUpKqJ8jhTBjFEqBJlTRmSiUJymGAmRS5nPVUEVIbmQiBURJAkuMEoQ7oOL7t61NR8b5Wq-0k6q5VJUymwcxyyi_m_Qi-d_xIXZ2Mq_jaM0ZSnFOPbSsJOkNc5ZVfC11SthtxxB3lbH23J4W87PlvhE3CUavVTb_3Q-Ht1NuthZF1v4-uwuhhFGjLY47LB2tfraYWHfuacJ4a8PGc_w0yy7Is-c4m8qwobX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199896334</pqid></control><display><type>article</type><title>Know-how sharing with stochastic innovations</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Eaton, B. Curtis ; Eswaran, Mukesh</creator><creatorcontrib>Eaton, B. Curtis ; Eswaran, Mukesh</creatorcontrib><description>We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33</description><identifier>ISSN: 0008-4085</identifier><identifier>EISSN: 1540-5982</identifier><identifier>DOI: 10.1111/0008-4085.00087</identifier><identifier>CODEN: CJECBC</identifier><language>eng</language><publisher>Boston, USA and Oxford, UK: Blackwell Publishers, Inc</publisher><subject>Canada ; Cheating ; Competition ; Cooperation Economics ; Economic models ; Economic theory ; Enterprises ; Information sharing ; Innovation ; Innovations ; Knowledge ; Nash equilibrium ; Profit ; Ritual exchange ; Sharing ; Steel industry ; Stochastic models ; Stochastic processes ; Studies ; Technological innovation ; Temptation ; Trade</subject><ispartof>The Canadian journal of economics, 2001-05, Vol.34 (2), p.525-548</ispartof><rights>Copyright 2001 Canadian Economics Association</rights><rights>Canadian Economics Association 2001</rights><rights>Copyright Blackwell Publishers Inc. May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4637-85f6391f2db1e538866aa5b685c7e149931aadccdbef6e55dac18f20573f31713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3131867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3131867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Eaton, B. Curtis</creatorcontrib><creatorcontrib>Eswaran, Mukesh</creatorcontrib><title>Know-how sharing with stochastic innovations</title><title>The Canadian journal of economics</title><description>We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33</description><subject>Canada</subject><subject>Cheating</subject><subject>Competition</subject><subject>Cooperation Economics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Enterprises</subject><subject>Information sharing</subject><subject>Innovation</subject><subject>Innovations</subject><subject>Knowledge</subject><subject>Nash equilibrium</subject><subject>Profit</subject><subject>Ritual exchange</subject><subject>Sharing</subject><subject>Steel industry</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Technological innovation</subject><subject>Temptation</subject><subject>Trade</subject><issn>0008-4085</issn><issn>1540-5982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwyAYhonRxDk9e_HQePBkNyiF0uNcZv2xaKIzHgmj1DK3MqGz7r-XWrODF78LX_I8L4EXgFMEB8jPEELIwhgyMmi3ZA_0EIlhSFIW7YPejh6CI-cWsB0Ee-DyvjJNWJomcKWwunoLGl2XgauNLIWrtQx0VZlPUWtTuWNwUIilUye_Zx-8XE9m45tw-pjdjkfTUMYUJyEjBcUpKqJ8jhTBjFEqBJlTRmSiUJymGAmRS5nPVUEVIbmQiBURJAkuMEoQ7oOL7t61NR8b5Wq-0k6q5VJUymwcxyyi_m_Qi-d_xIXZ2Mq_jaM0ZSnFOPbSsJOkNc5ZVfC11SthtxxB3lbH23J4W87PlvhE3CUavVTb_3Q-Ht1NuthZF1v4-uwuhhFGjLY47LB2tfraYWHfuacJ4a8PGc_w0yy7Is-c4m8qwobX</recordid><startdate>200105</startdate><enddate>200105</enddate><creator>Eaton, B. Curtis</creator><creator>Eswaran, Mukesh</creator><general>Blackwell Publishers, Inc</general><general>Blackwell Publishers</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200105</creationdate><title>Know-how sharing with stochastic innovations</title><author>Eaton, B. Curtis ; Eswaran, Mukesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4637-85f6391f2db1e538866aa5b685c7e149931aadccdbef6e55dac18f20573f31713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Canada</topic><topic>Cheating</topic><topic>Competition</topic><topic>Cooperation Economics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Enterprises</topic><topic>Information sharing</topic><topic>Innovation</topic><topic>Innovations</topic><topic>Knowledge</topic><topic>Nash equilibrium</topic><topic>Profit</topic><topic>Ritual exchange</topic><topic>Sharing</topic><topic>Steel industry</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Technological innovation</topic><topic>Temptation</topic><topic>Trade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eaton, B. Curtis</creatorcontrib><creatorcontrib>Eswaran, Mukesh</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Canadian journal of economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eaton, B. Curtis</au><au>Eswaran, Mukesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Know-how sharing with stochastic innovations</atitle><jtitle>The Canadian journal of economics</jtitle><date>2001-05</date><risdate>2001</risdate><volume>34</volume><issue>2</issue><spage>525</spage><epage>548</epage><pages>525-548</pages><issn>0008-4085</issn><eissn>1540-5982</eissn><coden>CJECBC</coden><abstract>We provide a model of know-how sharing between competing firms in which each of two firms gets a stochastic innovation in its stock of know-how in every period. Separately considering the cases when innovations are indivisible and divisible, we examine the nature of the subgame perfect sharing agreements that can obtain. We discover that both stochasticity and indivisibility undermine the ability to support sharing. Furthermore, we find that there are equilibria in which know-how sharing can be intermittent and that small innovations are more likely to be shared than large ones, when innovations are divisible but not necessarily when they are indivisible. JEL Classification: O30, O33</abstract><cop>Boston, USA and Oxford, UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/0008-4085.00087</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4085
ispartof The Canadian journal of economics, 2001-05, Vol.34 (2), p.525-548
issn 0008-4085
1540-5982
language eng
recordid cdi_proquest_miscellaneous_38265400
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Canada
Cheating
Competition
Cooperation Economics
Economic models
Economic theory
Enterprises
Information sharing
Innovation
Innovations
Knowledge
Nash equilibrium
Profit
Ritual exchange
Sharing
Steel industry
Stochastic models
Stochastic processes
Studies
Technological innovation
Temptation
Trade
title Know-how sharing with stochastic innovations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Know-how%20sharing%20with%20stochastic%20innovations&rft.jtitle=The%20Canadian%20journal%20of%20economics&rft.au=Eaton,%20B.%20Curtis&rft.date=2001-05&rft.volume=34&rft.issue=2&rft.spage=525&rft.epage=548&rft.pages=525-548&rft.issn=0008-4085&rft.eissn=1540-5982&rft.coden=CJECBC&rft_id=info:doi/10.1111/0008-4085.00087&rft_dat=%3Cjstor_proqu%3E3131867%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199896334&rft_id=info:pmid/&rft_jstor_id=3131867&rfr_iscdi=true