A New Look at Models For Exponential Smoothing

Exponential smoothing (ES) forecasting methods are widely used but are often discussed without recourse to a formal statistical framework. This paper reviews and compares a variety of potential models for ES. As well as autoregressive integrated moving average and structural models, a promising clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series D (The Statistician) 2001-01, Vol.50 (2), p.147-159
Hauptverfasser: Chatfield, Chris, Koehler, Anne B., Ord, J. K., Snyder, Ralph D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 147
container_title Journal of the Royal Statistical Society. Series D (The Statistician)
container_volume 50
creator Chatfield, Chris
Koehler, Anne B.
Ord, J. K.
Snyder, Ralph D.
description Exponential smoothing (ES) forecasting methods are widely used but are often discussed without recourse to a formal statistical framework. This paper reviews and compares a variety of potential models for ES. As well as autoregressive integrated moving average and structural models, a promising class of dynamic non-linear state space models is described that allows for a changing variance. The richness of possible models helps to explain why ES methods seem to be robust in practice. A modelling approach can enhance the forecaster's ability to identify pertinent components of time series variation, and to obtain more reliable estimates of prediction error variances. The paper should be of particular interest to those engaged in forecasting applications where strategies that allow for risk and uncertainty are needed.
doi_str_mv 10.1111/1467-9884.00267
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38251310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2681090</jstor_id><sourcerecordid>2681090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4037-4c82bf1e7702d5f27b0e3af1f6c9e162b62d2dae79cbc69af07759fb0924e78d3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqUwszBkQGxpz05iJ2PpJ1IpEgUxWo5jQ9o0Lnaqtv89KakqNk46nXT3fk-nh9Athg6uq4tDyvwkjsMOAKHsDLVOm3PUAggSHyJCL9GVcwsAzEgUtVCn583U1psas_RE5T2bTBXOGxnrDXdrU6qyykXhzVfGVF95-XmNLrQonLo5zjZ6Hw3f-hN_-jJ-6vemvgwhYH4oY5JqrBgDkkWasBRUIDTWVCYKU5JSkpFMKJbIVNJEaGAsSnQKCQkVi7OgjR4a37U13xvlKr7KnVRFIUplNo4HMYlwgKEWdhuhtMY5qzRf23wl7J5j4Idc-CEFfkiB_-ZSE_dHa-GkKLQVpczdHyykddeysJFt80Lt_3Plr_P5oHG_a7CFq4w9YYTGGJLDu35zzl2ldqezsEtewyziH7MxD0eTxximAz4KfgA2HYfO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38251310</pqid></control><display><type>article</type><title>A New Look at Models For Exponential Smoothing</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Chatfield, Chris ; Koehler, Anne B. ; Ord, J. K. ; Snyder, Ralph D.</creator><creatorcontrib>Chatfield, Chris ; Koehler, Anne B. ; Ord, J. K. ; Snyder, Ralph D.</creatorcontrib><description>Exponential smoothing (ES) forecasting methods are widely used but are often discussed without recourse to a formal statistical framework. This paper reviews and compares a variety of potential models for ES. As well as autoregressive integrated moving average and structural models, a promising class of dynamic non-linear state space models is described that allows for a changing variance. The richness of possible models helps to explain why ES methods seem to be robust in practice. A modelling approach can enhance the forecaster's ability to identify pertinent components of time series variation, and to obtain more reliable estimates of prediction error variances. The paper should be of particular interest to those engaged in forecasting applications where strategies that allow for risk and uncertainty are needed.</description><identifier>ISSN: 0039-0526</identifier><identifier>EISSN: 1467-9884</identifier><identifier>DOI: 10.1111/1467-9884.00267</identifier><identifier>CODEN: STTNAP</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Analytical forecasting ; Autoregressive integrated moving average models ; Data smoothing ; Error rates ; Exact sciences and technology ; Exponential smoothing ; Forecasting ; Forecasting models ; Holt-Winters method ; Inference from stochastic processes; time series analysis ; Mathematics ; Model testing ; Modeling ; Modelling ; Musical intervals ; Prediction intervals ; Probability and statistics ; Regression analysis ; Sales forecasting ; Sciences and techniques of general use ; Seasonality ; State space models ; Statistical analysis ; Statistical forecasts ; Statistical models ; Statistical variance ; Statistics ; Structural models ; Time series ; Time series forecasting ; Trend</subject><ispartof>Journal of the Royal Statistical Society. Series D (The Statistician), 2001-01, Vol.50 (2), p.147-159</ispartof><rights>Copyright 2001 The Royal Statistical Society</rights><rights>Royal Statistical Society 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4037-4c82bf1e7702d5f27b0e3af1f6c9e162b62d2dae79cbc69af07759fb0924e78d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2681090$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2681090$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1046104$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatfield, Chris</creatorcontrib><creatorcontrib>Koehler, Anne B.</creatorcontrib><creatorcontrib>Ord, J. K.</creatorcontrib><creatorcontrib>Snyder, Ralph D.</creatorcontrib><title>A New Look at Models For Exponential Smoothing</title><title>Journal of the Royal Statistical Society. Series D (The Statistician)</title><description>Exponential smoothing (ES) forecasting methods are widely used but are often discussed without recourse to a formal statistical framework. This paper reviews and compares a variety of potential models for ES. As well as autoregressive integrated moving average and structural models, a promising class of dynamic non-linear state space models is described that allows for a changing variance. The richness of possible models helps to explain why ES methods seem to be robust in practice. A modelling approach can enhance the forecaster's ability to identify pertinent components of time series variation, and to obtain more reliable estimates of prediction error variances. The paper should be of particular interest to those engaged in forecasting applications where strategies that allow for risk and uncertainty are needed.</description><subject>Analytical forecasting</subject><subject>Autoregressive integrated moving average models</subject><subject>Data smoothing</subject><subject>Error rates</subject><subject>Exact sciences and technology</subject><subject>Exponential smoothing</subject><subject>Forecasting</subject><subject>Forecasting models</subject><subject>Holt-Winters method</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Model testing</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Musical intervals</subject><subject>Prediction intervals</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sales forecasting</subject><subject>Sciences and techniques of general use</subject><subject>Seasonality</subject><subject>State space models</subject><subject>Statistical analysis</subject><subject>Statistical forecasts</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Structural models</subject><subject>Time series</subject><subject>Time series forecasting</subject><subject>Trend</subject><issn>0039-0526</issn><issn>1467-9884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqUwszBkQGxpz05iJ2PpJ1IpEgUxWo5jQ9o0Lnaqtv89KakqNk46nXT3fk-nh9Athg6uq4tDyvwkjsMOAKHsDLVOm3PUAggSHyJCL9GVcwsAzEgUtVCn583U1psas_RE5T2bTBXOGxnrDXdrU6qyykXhzVfGVF95-XmNLrQonLo5zjZ6Hw3f-hN_-jJ-6vemvgwhYH4oY5JqrBgDkkWasBRUIDTWVCYKU5JSkpFMKJbIVNJEaGAsSnQKCQkVi7OgjR4a37U13xvlKr7KnVRFIUplNo4HMYlwgKEWdhuhtMY5qzRf23wl7J5j4Idc-CEFfkiB_-ZSE_dHa-GkKLQVpczdHyykddeysJFt80Lt_3Plr_P5oHG_a7CFq4w9YYTGGJLDu35zzl2ldqezsEtewyziH7MxD0eTxximAz4KfgA2HYfO</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Chatfield, Chris</creator><creator>Koehler, Anne B.</creator><creator>Ord, J. K.</creator><creator>Snyder, Ralph D.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20010101</creationdate><title>A New Look at Models For Exponential Smoothing</title><author>Chatfield, Chris ; Koehler, Anne B. ; Ord, J. K. ; Snyder, Ralph D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4037-4c82bf1e7702d5f27b0e3af1f6c9e162b62d2dae79cbc69af07759fb0924e78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical forecasting</topic><topic>Autoregressive integrated moving average models</topic><topic>Data smoothing</topic><topic>Error rates</topic><topic>Exact sciences and technology</topic><topic>Exponential smoothing</topic><topic>Forecasting</topic><topic>Forecasting models</topic><topic>Holt-Winters method</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Model testing</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Musical intervals</topic><topic>Prediction intervals</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sales forecasting</topic><topic>Sciences and techniques of general use</topic><topic>Seasonality</topic><topic>State space models</topic><topic>Statistical analysis</topic><topic>Statistical forecasts</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Structural models</topic><topic>Time series</topic><topic>Time series forecasting</topic><topic>Trend</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatfield, Chris</creatorcontrib><creatorcontrib>Koehler, Anne B.</creatorcontrib><creatorcontrib>Ord, J. K.</creatorcontrib><creatorcontrib>Snyder, Ralph D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series D (The Statistician)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatfield, Chris</au><au>Koehler, Anne B.</au><au>Ord, J. K.</au><au>Snyder, Ralph D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Look at Models For Exponential Smoothing</atitle><jtitle>Journal of the Royal Statistical Society. Series D (The Statistician)</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>50</volume><issue>2</issue><spage>147</spage><epage>159</epage><pages>147-159</pages><issn>0039-0526</issn><eissn>1467-9884</eissn><coden>STTNAP</coden><abstract>Exponential smoothing (ES) forecasting methods are widely used but are often discussed without recourse to a formal statistical framework. This paper reviews and compares a variety of potential models for ES. As well as autoregressive integrated moving average and structural models, a promising class of dynamic non-linear state space models is described that allows for a changing variance. The richness of possible models helps to explain why ES methods seem to be robust in practice. A modelling approach can enhance the forecaster's ability to identify pertinent components of time series variation, and to obtain more reliable estimates of prediction error variances. The paper should be of particular interest to those engaged in forecasting applications where strategies that allow for risk and uncertainty are needed.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9884.00267</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-0526
ispartof Journal of the Royal Statistical Society. Series D (The Statistician), 2001-01, Vol.50 (2), p.147-159
issn 0039-0526
1467-9884
language eng
recordid cdi_proquest_miscellaneous_38251310
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete
subjects Analytical forecasting
Autoregressive integrated moving average models
Data smoothing
Error rates
Exact sciences and technology
Exponential smoothing
Forecasting
Forecasting models
Holt-Winters method
Inference from stochastic processes
time series analysis
Mathematics
Model testing
Modeling
Modelling
Musical intervals
Prediction intervals
Probability and statistics
Regression analysis
Sales forecasting
Sciences and techniques of general use
Seasonality
State space models
Statistical analysis
Statistical forecasts
Statistical models
Statistical variance
Statistics
Structural models
Time series
Time series forecasting
Trend
title A New Look at Models For Exponential Smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Look%20at%20Models%20For%20Exponential%20Smoothing&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20D%20(The%20Statistician)&rft.au=Chatfield,%20Chris&rft.date=2001-01-01&rft.volume=50&rft.issue=2&rft.spage=147&rft.epage=159&rft.pages=147-159&rft.issn=0039-0526&rft.eissn=1467-9884&rft.coden=STTNAP&rft_id=info:doi/10.1111/1467-9884.00267&rft_dat=%3Cjstor_proqu%3E2681090%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38251310&rft_id=info:pmid/&rft_jstor_id=2681090&rfr_iscdi=true