Second order behaviour of ruin probabilities in the case of large claims
In this paper, we consider the classical risk model. Assuming that the claim-size is heavy-tailed, say, subexponential, under simple conditions the second order asymptotic behaviour of ruin probabilities is obtained.
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2005-06, Vol.36 (3), p.485-498 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | 3 |
container_start_page | 485 |
container_title | Insurance, mathematics & economics |
container_volume | 36 |
creator | Baltrunas, A |
description | In this paper, we consider the classical risk model. Assuming that the claim-size is heavy-tailed, say, subexponential, under simple conditions the second order asymptotic behaviour of ruin probabilities is obtained. |
doi_str_mv | 10.1016/j.insmatheco.2005.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38211983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668705000260</els_id><sourcerecordid>866503101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7ef09c90fc67ce4829aa45abea385e37764b46d6c919ba7b5de7f52e570bbbda3</originalsourceid><addsrcrecordid>eNqFUMuO1DAQtBBIDMv-Q8SBW4Idx68jrIAFrcSB3bPVdjqMR3kMdjLS_v32MAgkLhzKLbeqyuVirBK8EVzod4cmzWWCdY9xaVrOVcNFQ-MZ2wlrZK2ccs_Zjqim1tqal-xVKQfOuXDa7Njtd9LNfbXkHnMVcA-ntGy5WoYqb2mujnkJENKY1oSlogU9VEUoeGaMkH_QbYQ0ldfsxQBjwevf84o9fPp4f3Nb3337_OXm_V0dO9OttcGBu-j4ELWJ2NnWAXQKAoK0CqUxugud7nV0wgUwQfVoBtWiMjyE0IO8Ym8vvpTs54Zl9VMqEccRZly24qVthXBWEvHNP8QDfWymbL7lVmglrCCSvZBiXkrJOPhjThPkRy-4P_frD_5vv_7cr-fC0yDp14s04xHjHx0ikmCbwJ-8BKnpeCT8UkpI5x3hSOis8p2zfr9OZPbhYoZU3Slh9iUmnCP2KWNcfb-k_yd6ApC8oqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208165181</pqid></control><display><type>article</type><title>Second order behaviour of ruin probabilities in the case of large claims</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Baltrunas, A</creator><creatorcontrib>Baltrunas, A</creatorcontrib><description>In this paper, we consider the classical risk model. Assuming that the claim-size is heavy-tailed, say, subexponential, under simple conditions the second order asymptotic behaviour of ruin probabilities is obtained.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2005.01.005</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Distribution ; Financial economics ; Insurance ; Insurance risk ; Integrated tail ; Mathematical economics ; Mathematical models ; Poisson distribution ; Poisson model ; Risk ; Risk theory ; Ruin probability ; Statistical methods ; Stochastic models ; Stochastic processes ; Studies ; Subexponential distributions</subject><ispartof>Insurance, mathematics & economics, 2005-06, Vol.36 (3), p.485-498</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 24, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7ef09c90fc67ce4829aa45abea385e37764b46d6c919ba7b5de7f52e570bbbda3</citedby><cites>FETCH-LOGICAL-c474t-7ef09c90fc67ce4829aa45abea385e37764b46d6c919ba7b5de7f52e570bbbda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668705000260$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a36_3ay_3a2005_3ai_3a3_3ap_3a485-498.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Baltrunas, A</creatorcontrib><title>Second order behaviour of ruin probabilities in the case of large claims</title><title>Insurance, mathematics & economics</title><description>In this paper, we consider the classical risk model. Assuming that the claim-size is heavy-tailed, say, subexponential, under simple conditions the second order asymptotic behaviour of ruin probabilities is obtained.</description><subject>Distribution</subject><subject>Financial economics</subject><subject>Insurance</subject><subject>Insurance risk</subject><subject>Integrated tail</subject><subject>Mathematical economics</subject><subject>Mathematical models</subject><subject>Poisson distribution</subject><subject>Poisson model</subject><subject>Risk</subject><subject>Risk theory</subject><subject>Ruin probability</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Subexponential distributions</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMuO1DAQtBBIDMv-Q8SBW4Idx68jrIAFrcSB3bPVdjqMR3kMdjLS_v32MAgkLhzKLbeqyuVirBK8EVzod4cmzWWCdY9xaVrOVcNFQ-MZ2wlrZK2ccs_Zjqim1tqal-xVKQfOuXDa7Njtd9LNfbXkHnMVcA-ntGy5WoYqb2mujnkJENKY1oSlogU9VEUoeGaMkH_QbYQ0ldfsxQBjwevf84o9fPp4f3Nb3337_OXm_V0dO9OttcGBu-j4ELWJ2NnWAXQKAoK0CqUxugud7nV0wgUwQfVoBtWiMjyE0IO8Ym8vvpTs54Zl9VMqEccRZly24qVthXBWEvHNP8QDfWymbL7lVmglrCCSvZBiXkrJOPhjThPkRy-4P_frD_5vv_7cr-fC0yDp14s04xHjHx0ikmCbwJ-8BKnpeCT8UkpI5x3hSOis8p2zfr9OZPbhYoZU3Slh9iUmnCP2KWNcfb-k_yd6ApC8oqQ</recordid><startdate>20050624</startdate><enddate>20050624</enddate><creator>Baltrunas, A</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20050624</creationdate><title>Second order behaviour of ruin probabilities in the case of large claims</title><author>Baltrunas, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7ef09c90fc67ce4829aa45abea385e37764b46d6c919ba7b5de7f52e570bbbda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Distribution</topic><topic>Financial economics</topic><topic>Insurance</topic><topic>Insurance risk</topic><topic>Integrated tail</topic><topic>Mathematical economics</topic><topic>Mathematical models</topic><topic>Poisson distribution</topic><topic>Poisson model</topic><topic>Risk</topic><topic>Risk theory</topic><topic>Ruin probability</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Subexponential distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltrunas, A</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltrunas, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second order behaviour of ruin probabilities in the case of large claims</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2005-06-24</date><risdate>2005</risdate><volume>36</volume><issue>3</issue><spage>485</spage><epage>498</epage><pages>485-498</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In this paper, we consider the classical risk model. Assuming that the claim-size is heavy-tailed, say, subexponential, under simple conditions the second order asymptotic behaviour of ruin probabilities is obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2005.01.005</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2005-06, Vol.36 (3), p.485-498 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_38211983 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Distribution Financial economics Insurance Insurance risk Integrated tail Mathematical economics Mathematical models Poisson distribution Poisson model Risk Risk theory Ruin probability Statistical methods Stochastic models Stochastic processes Studies Subexponential distributions |
title | Second order behaviour of ruin probabilities in the case of large claims |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20order%20behaviour%20of%20ruin%20probabilities%20in%20the%20case%20of%20large%20claims&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Baltrunas,%20A&rft.date=2005-06-24&rft.volume=36&rft.issue=3&rft.spage=485&rft.epage=498&rft.pages=485-498&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2005.01.005&rft_dat=%3Cproquest_cross%3E866503101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208165181&rft_id=info:pmid/&rft_els_id=S0167668705000260&rfr_iscdi=true |