Estimating the tail-dependence coefficient: Properties and pitfalls
The concept of tail dependence describes the amount of dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common measure of tail dependence is given by the so-called tail-dependence coefficient. This paper surveys various estimators for the tail-de...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2005-08, Vol.37 (1), p.80-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 80 |
container_title | Insurance, mathematics & economics |
container_volume | 37 |
creator | Frahm, Gabriel Junker, Markus Schmidt, Rafael |
description | The concept of tail dependence describes the amount of dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common measure of tail dependence is given by the so-called tail-dependence coefficient. This paper surveys various estimators for the tail-dependence coefficient within a parametric, semiparametric, and nonparametric framework. Further, a detailed simulation study is provided which compares and illustrates the advantages and disadvantages of the estimators. |
doi_str_mv | 10.1016/j.insmatheco.2005.05.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38181517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016766870500065X</els_id><sourcerecordid>879401481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-c4ae387bedc762d20b40c14c6593bc46c7ef739915257fcaa2cb893e98f583f33</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDhEHbil23MQON6j4qVQJDnC23M2GukqTYLuV-vZsKAKJC9KO9zIzXn2MJYJPBBfF9Xri2rCxcYXQTTLO88kwXB-xkdBKpnmZl8dsRFaVFoVWp-wshDXnXJSFGrHZfYiO4q59T6gjidY1aYU9thW2gAl0WNcOHLbxJnnxXY8-OgyJbaukd7G2TRPO2QntgBffe8zeHu5fZ0_p4vlxPrtdpDBVMtJrUWq1xApUkVUZX045iCkUeSmXMC1AYa1kWYo8y1UN1maw1KXEUte5lrWUY3Z16O1997HFEM3GBcCmsS1222CkFlrkQpHx8o9x3W19S7eZjJOJC5GRSR9M4LsQPNam90TC743gZkBr1uYXrRnQmmG4puj8EPUECn5yiEiB7caanZFWKnr2pK-ktI4kSD1JDz9ws4ob6ro7dCGR2zn0Jgy0ASvnEaKpOvf_QZ9_raBn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208180112</pqid></control><display><type>article</type><title>Estimating the tail-dependence coefficient: Properties and pitfalls</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Frahm, Gabriel ; Junker, Markus ; Schmidt, Rafael</creator><creatorcontrib>Frahm, Gabriel ; Junker, Markus ; Schmidt, Rafael</creatorcontrib><description>The concept of tail dependence describes the amount of dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common measure of tail dependence is given by the so-called tail-dependence coefficient. This paper surveys various estimators for the tail-dependence coefficient within a parametric, semiparametric, and nonparametric framework. Further, a detailed simulation study is provided which compares and illustrates the advantages and disadvantages of the estimators.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2005.05.008</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Copula ; Distribution ; Estimating techniques ; Estimation ; Extreme value theory ; Financial economics ; Insurance ; Mathematical analysis ; Mathematical economics ; Mathematics ; Model testing ; Simulation ; Statistics ; Studies ; Tail dependence ; Tail-dependence coefficient</subject><ispartof>Insurance, mathematics & economics, 2005-08, Vol.37 (1), p.80-100</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 23, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-c4ae387bedc762d20b40c14c6593bc46c7ef739915257fcaa2cb893e98f583f33</citedby><cites>FETCH-LOGICAL-c473t-c4ae387bedc762d20b40c14c6593bc46c7ef739915257fcaa2cb893e98f583f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2005.05.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a37_3ay_3a2005_3ai_3a1_3ap_3a80-100.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Frahm, Gabriel</creatorcontrib><creatorcontrib>Junker, Markus</creatorcontrib><creatorcontrib>Schmidt, Rafael</creatorcontrib><title>Estimating the tail-dependence coefficient: Properties and pitfalls</title><title>Insurance, mathematics & economics</title><description>The concept of tail dependence describes the amount of dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common measure of tail dependence is given by the so-called tail-dependence coefficient. This paper surveys various estimators for the tail-dependence coefficient within a parametric, semiparametric, and nonparametric framework. Further, a detailed simulation study is provided which compares and illustrates the advantages and disadvantages of the estimators.</description><subject>Copula</subject><subject>Distribution</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Extreme value theory</subject><subject>Financial economics</subject><subject>Insurance</subject><subject>Mathematical analysis</subject><subject>Mathematical economics</subject><subject>Mathematics</subject><subject>Model testing</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Studies</subject><subject>Tail dependence</subject><subject>Tail-dependence coefficient</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkM1OwzAQhC0EEqXwDhEHbil23MQON6j4qVQJDnC23M2GukqTYLuV-vZsKAKJC9KO9zIzXn2MJYJPBBfF9Xri2rCxcYXQTTLO88kwXB-xkdBKpnmZl8dsRFaVFoVWp-wshDXnXJSFGrHZfYiO4q59T6gjidY1aYU9thW2gAl0WNcOHLbxJnnxXY8-OgyJbaukd7G2TRPO2QntgBffe8zeHu5fZ0_p4vlxPrtdpDBVMtJrUWq1xApUkVUZX045iCkUeSmXMC1AYa1kWYo8y1UN1maw1KXEUte5lrWUY3Z16O1997HFEM3GBcCmsS1222CkFlrkQpHx8o9x3W19S7eZjJOJC5GRSR9M4LsQPNam90TC743gZkBr1uYXrRnQmmG4puj8EPUECn5yiEiB7caanZFWKnr2pK-ktI4kSD1JDz9ws4ob6ro7dCGR2zn0Jgy0ASvnEaKpOvf_QZ9_raBn</recordid><startdate>20050823</startdate><enddate>20050823</enddate><creator>Frahm, Gabriel</creator><creator>Junker, Markus</creator><creator>Schmidt, Rafael</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20050823</creationdate><title>Estimating the tail-dependence coefficient: Properties and pitfalls</title><author>Frahm, Gabriel ; Junker, Markus ; Schmidt, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-c4ae387bedc762d20b40c14c6593bc46c7ef739915257fcaa2cb893e98f583f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Copula</topic><topic>Distribution</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Extreme value theory</topic><topic>Financial economics</topic><topic>Insurance</topic><topic>Mathematical analysis</topic><topic>Mathematical economics</topic><topic>Mathematics</topic><topic>Model testing</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Studies</topic><topic>Tail dependence</topic><topic>Tail-dependence coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frahm, Gabriel</creatorcontrib><creatorcontrib>Junker, Markus</creatorcontrib><creatorcontrib>Schmidt, Rafael</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frahm, Gabriel</au><au>Junker, Markus</au><au>Schmidt, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the tail-dependence coefficient: Properties and pitfalls</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2005-08-23</date><risdate>2005</risdate><volume>37</volume><issue>1</issue><spage>80</spage><epage>100</epage><pages>80-100</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>The concept of tail dependence describes the amount of dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common measure of tail dependence is given by the so-called tail-dependence coefficient. This paper surveys various estimators for the tail-dependence coefficient within a parametric, semiparametric, and nonparametric framework. Further, a detailed simulation study is provided which compares and illustrates the advantages and disadvantages of the estimators.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2005.05.008</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2005-08, Vol.37 (1), p.80-100 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_38181517 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Copula Distribution Estimating techniques Estimation Extreme value theory Financial economics Insurance Mathematical analysis Mathematical economics Mathematics Model testing Simulation Statistics Studies Tail dependence Tail-dependence coefficient |
title | Estimating the tail-dependence coefficient: Properties and pitfalls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20tail-dependence%20coefficient:%20Properties%20and%20pitfalls&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Frahm,%20Gabriel&rft.date=2005-08-23&rft.volume=37&rft.issue=1&rft.spage=80&rft.epage=100&rft.pages=80-100&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2005.05.008&rft_dat=%3Cproquest_cross%3E879401481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208180112&rft_id=info:pmid/&rft_els_id=S016766870500065X&rfr_iscdi=true |