THE MEAN-MEDIAN-MODE INEQUALITY: COUNTEREXAMPLES
Let x be a random variable whose first three moments exist. If the density of x is unimodal and positively skewed, then counterexamples are provided which show that the inequality mode ≤ median ≤ mean does not necessarily hold.I thank Andrey Vasnev for help with the graphs and Jan Magnus for various...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2005-04, Vol.21 (2), p.477-482 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 2 |
container_start_page | 477 |
container_title | Econometric theory |
container_volume | 21 |
creator | Abadir, Karim M. |
description | Let x be a random variable whose first three moments exist.
If the density of x is unimodal and positively skewed, then
counterexamples are provided which show that the inequality mode ≤
median ≤ mean does not necessarily hold.I thank Andrey Vasnev for help with the graphs and Jan Magnus
for various helpful discussions. I also thank Martin Bland, Paolo Paruolo,
Peter Phillips, Michael Rockinger, and a referee for their comments. ESRC
grant R000239538 is gratefully acknowledged. |
doi_str_mv | 10.1017/S0266466605050267 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38061719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466605050267</cupid><jstor_id>3533476</jstor_id><sourcerecordid>3533476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-7bdc4876aa115ad1358483b4b26cd552f6313b524e174d5ad83a2d9971bfc2073</originalsourceid><addsrcrecordid>eNp1kE1LQkEUhocoyKwfELSQFu1uzZnPe9vJdfwIvWZq1GqY-2Fo6rUZhfr3jSgGRZzFWTzPe3g5CF0CvgUM8m6IiRBMCIG5HyLkEaoAE1HAqMDHqLLFwZafojPnZhgDiSStIDxqq1pP1ZOgpxqd7eo3VK2TqMG43u2MXu9rcX-cjNSTeqn3HrtqeI5OJmbuiov9rqJxU43idtDttzpxvRtkHMQ6kGmesVAKYwC4yYHykIU0ZSkRWc45mQgKNOWEFSBZ7o2QGpJHkYR0khEsaRXd7O6ubPmxKdxaL6YuK-ZzsyzKjdM0xAIkRF68_iXOyo1d-m6aAKE8EhH3EuykzJbO2WKiV3a6MPZLA9bbB-o_D_SZq11m5talPQQop5RJ4XGww1O3Lj4P2Nh37cOSa9Ea6CSOHnCcPOum9-m-glmkdpq_FT9F_y_xDW47g4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212359695</pqid></control><display><type>article</type><title>THE MEAN-MEDIAN-MODE INEQUALITY: COUNTEREXAMPLES</title><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Abadir, Karim M.</creator><creatorcontrib>Abadir, Karim M.</creatorcontrib><description>Let x be a random variable whose first three moments exist.
If the density of x is unimodal and positively skewed, then
counterexamples are provided which show that the inequality mode ≤
median ≤ mean does not necessarily hold.I thank Andrey Vasnev for help with the graphs and Jan Magnus
for various helpful discussions. I also thank Martin Bland, Paolo Paruolo,
Peter Phillips, Michael Rockinger, and a referee for their comments. ESRC
grant R000239538 is gratefully acknowledged.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466605050267</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Counterexamples ; Econometrics ; Inequality ; Mathematical analysis ; Mathematical methods ; NOTES AND PROBLEMS ; Random variables ; Skewed distribution ; Skewness ; Statistical median ; Statistical mode ; Studies</subject><ispartof>Econometric theory, 2005-04, Vol.21 (2), p.477-482</ispartof><rights>2005 Cambridge University Press</rights><rights>Copyright 2005 Cambridge University Press</rights><rights>Copyright Cambridge University Press, Publishing Division Apr 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-7bdc4876aa115ad1358483b4b26cd552f6313b524e174d5ad83a2d9971bfc2073</citedby><cites>FETCH-LOGICAL-c516t-7bdc4876aa115ad1358483b4b26cd552f6313b524e174d5ad83a2d9971bfc2073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3533476$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466605050267/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Abadir, Karim M.</creatorcontrib><title>THE MEAN-MEDIAN-MODE INEQUALITY: COUNTEREXAMPLES</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Let x be a random variable whose first three moments exist.
If the density of x is unimodal and positively skewed, then
counterexamples are provided which show that the inequality mode ≤
median ≤ mean does not necessarily hold.I thank Andrey Vasnev for help with the graphs and Jan Magnus
for various helpful discussions. I also thank Martin Bland, Paolo Paruolo,
Peter Phillips, Michael Rockinger, and a referee for their comments. ESRC
grant R000239538 is gratefully acknowledged.</description><subject>Counterexamples</subject><subject>Econometrics</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical methods</subject><subject>NOTES AND PROBLEMS</subject><subject>Random variables</subject><subject>Skewed distribution</subject><subject>Skewness</subject><subject>Statistical median</subject><subject>Statistical mode</subject><subject>Studies</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LQkEUhocoyKwfELSQFu1uzZnPe9vJdfwIvWZq1GqY-2Fo6rUZhfr3jSgGRZzFWTzPe3g5CF0CvgUM8m6IiRBMCIG5HyLkEaoAE1HAqMDHqLLFwZafojPnZhgDiSStIDxqq1pP1ZOgpxqd7eo3VK2TqMG43u2MXu9rcX-cjNSTeqn3HrtqeI5OJmbuiov9rqJxU43idtDttzpxvRtkHMQ6kGmesVAKYwC4yYHykIU0ZSkRWc45mQgKNOWEFSBZ7o2QGpJHkYR0khEsaRXd7O6ubPmxKdxaL6YuK-ZzsyzKjdM0xAIkRF68_iXOyo1d-m6aAKE8EhH3EuykzJbO2WKiV3a6MPZLA9bbB-o_D_SZq11m5talPQQop5RJ4XGww1O3Lj4P2Nh37cOSa9Ea6CSOHnCcPOum9-m-glmkdpq_FT9F_y_xDW47g4g</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Abadir, Karim M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20050401</creationdate><title>THE MEAN-MEDIAN-MODE INEQUALITY: COUNTEREXAMPLES</title><author>Abadir, Karim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-7bdc4876aa115ad1358483b4b26cd552f6313b524e174d5ad83a2d9971bfc2073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Counterexamples</topic><topic>Econometrics</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical methods</topic><topic>NOTES AND PROBLEMS</topic><topic>Random variables</topic><topic>Skewed distribution</topic><topic>Skewness</topic><topic>Statistical median</topic><topic>Statistical mode</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadir, Karim M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadir, Karim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE MEAN-MEDIAN-MODE INEQUALITY: COUNTEREXAMPLES</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>21</volume><issue>2</issue><spage>477</spage><epage>482</epage><pages>477-482</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Let x be a random variable whose first three moments exist.
If the density of x is unimodal and positively skewed, then
counterexamples are provided which show that the inequality mode ≤
median ≤ mean does not necessarily hold.I thank Andrey Vasnev for help with the graphs and Jan Magnus
for various helpful discussions. I also thank Martin Bland, Paolo Paruolo,
Peter Phillips, Michael Rockinger, and a referee for their comments. ESRC
grant R000239538 is gratefully acknowledged.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466605050267</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4666 |
ispartof | Econometric theory, 2005-04, Vol.21 (2), p.477-482 |
issn | 0266-4666 1469-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_38061719 |
source | JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | Counterexamples Econometrics Inequality Mathematical analysis Mathematical methods NOTES AND PROBLEMS Random variables Skewed distribution Skewness Statistical median Statistical mode Studies |
title | THE MEAN-MEDIAN-MODE INEQUALITY: COUNTEREXAMPLES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20MEAN-MEDIAN-MODE%20INEQUALITY:%20COUNTEREXAMPLES&rft.jtitle=Econometric%20theory&rft.au=Abadir,%20Karim%20M.&rft.date=2005-04-01&rft.volume=21&rft.issue=2&rft.spage=477&rft.epage=482&rft.pages=477-482&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466605050267&rft_dat=%3Cjstor_proqu%3E3533476%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212359695&rft_id=info:pmid/&rft_cupid=10_1017_S0266466605050267&rft_jstor_id=3533476&rfr_iscdi=true |