Fuzzy logic in insurance

The insurance industry has numerous areas with potential applications for fuzzy logic (FL). These include classification, underwriting, projected liabilities, fuzzy future and present values, pricing, asset allocations and cash flows, and investment. Given this potential and the impetus on FL during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2004-10, Vol.35 (2), p.399-424
1. Verfasser: Shapiro, Arnold F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 2
container_start_page 399
container_title Insurance, mathematics & economics
container_volume 35
creator Shapiro, Arnold F.
description The insurance industry has numerous areas with potential applications for fuzzy logic (FL). These include classification, underwriting, projected liabilities, fuzzy future and present values, pricing, asset allocations and cash flows, and investment. Given this potential and the impetus on FL during the last decade, it is not surprising that a number of FL studies have focused on insurance applications. This article presents an overview of these studies. The specific purposes of the article are two-fold: first, to review FL applications in insurance so as to document the unique characteristics of insurance as an application area; and second, to document the extent to which FL technologies have been employed.
doi_str_mv 10.1016/j.insmatheco.2004.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37998281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668704000903</els_id><sourcerecordid>37998281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1ecf0c7badfd1e1104c5d6bb56668adcacee0123a76ad46580cfda1d9481e26a3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwM1YMbAnnfNjJCBXlQ5VYYD659oW6apJiJ5Xavx6HIpBYkH1nS37v-fRjbMIh5sDFzSq2ja9VtyTdxglAFoOMgcMRG_FCplFe5uUxGwWpjIQo5Ck7834FALwUcsQuZ_1-v5us23erJ7YJ2_dONZrO2Uml1p4uvs8xe5vdv04fo_nLw9P0dh7pTCZdxElXoOVCmcpw4hwynRuxWOQifKaMVpoIeJIqKZTJRF6ArozipswKTolQ6ZhdH3I3rv3oyXdYW69pvVYNtb3HVJZlkRQ8CK_-CFdt75owGyZQcJmFFUTFQaRd672jCjfO1srtkAMOvHCFv7xw4IUgMfAK1ueD1dGG9I-PiAYmtcItpirNQ9uF-nKmyg7XUJvhrSwxSzJcdnUIuzuEUUC3teTQa0sBq7GOdIemtf9P9An7lpFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208174747</pqid></control><display><type>article</type><title>Fuzzy logic in insurance</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shapiro, Arnold F.</creator><creatorcontrib>Shapiro, Arnold F.</creatorcontrib><description>The insurance industry has numerous areas with potential applications for fuzzy logic (FL). These include classification, underwriting, projected liabilities, fuzzy future and present values, pricing, asset allocations and cash flows, and investment. Given this potential and the impetus on FL during the last decade, it is not surprising that a number of FL studies have focused on insurance applications. This article presents an overview of these studies. The specific purposes of the article are two-fold: first, to review FL applications in insurance so as to document the unique characteristics of insurance as an application area; and second, to document the extent to which FL technologies have been employed.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2004.07.010</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actuarial ; Fuzzy clustering ; Fuzzy inference systems ; Fuzzy logic ; Fuzzy sets ; Insurance ; Insurance applications ; Insurance industry ; Mathematical methods ; Mathematics ; Risk theory ; Studies</subject><ispartof>Insurance, mathematics &amp; economics, 2004-10, Vol.35 (2), p.399-424</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 11, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1ecf0c7badfd1e1104c5d6bb56668adcacee0123a76ad46580cfda1d9481e26a3</citedby><cites>FETCH-LOGICAL-c472t-1ecf0c7badfd1e1104c5d6bb56668adcacee0123a76ad46580cfda1d9481e26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668704000903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a35_3ay_3a2004_3ai_3a2_3ap_3a399-424.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Shapiro, Arnold F.</creatorcontrib><title>Fuzzy logic in insurance</title><title>Insurance, mathematics &amp; economics</title><description>The insurance industry has numerous areas with potential applications for fuzzy logic (FL). These include classification, underwriting, projected liabilities, fuzzy future and present values, pricing, asset allocations and cash flows, and investment. Given this potential and the impetus on FL during the last decade, it is not surprising that a number of FL studies have focused on insurance applications. This article presents an overview of these studies. The specific purposes of the article are two-fold: first, to review FL applications in insurance so as to document the unique characteristics of insurance as an application area; and second, to document the extent to which FL technologies have been employed.</description><subject>Actuarial</subject><subject>Fuzzy clustering</subject><subject>Fuzzy inference systems</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Insurance</subject><subject>Insurance applications</subject><subject>Insurance industry</subject><subject>Mathematical methods</subject><subject>Mathematics</subject><subject>Risk theory</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkL1PwzAQxS0EEqWwM1YMbAnnfNjJCBXlQ5VYYD659oW6apJiJ5Xavx6HIpBYkH1nS37v-fRjbMIh5sDFzSq2ja9VtyTdxglAFoOMgcMRG_FCplFe5uUxGwWpjIQo5Ck7834FALwUcsQuZ_1-v5us23erJ7YJ2_dONZrO2Uml1p4uvs8xe5vdv04fo_nLw9P0dh7pTCZdxElXoOVCmcpw4hwynRuxWOQifKaMVpoIeJIqKZTJRF6ArozipswKTolQ6ZhdH3I3rv3oyXdYW69pvVYNtb3HVJZlkRQ8CK_-CFdt75owGyZQcJmFFUTFQaRd672jCjfO1srtkAMOvHCFv7xw4IUgMfAK1ueD1dGG9I-PiAYmtcItpirNQ9uF-nKmyg7XUJvhrSwxSzJcdnUIuzuEUUC3teTQa0sBq7GOdIemtf9P9An7lpFA</recordid><startdate>20041011</startdate><enddate>20041011</enddate><creator>Shapiro, Arnold F.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20041011</creationdate><title>Fuzzy logic in insurance</title><author>Shapiro, Arnold F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1ecf0c7badfd1e1104c5d6bb56668adcacee0123a76ad46580cfda1d9481e26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actuarial</topic><topic>Fuzzy clustering</topic><topic>Fuzzy inference systems</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Insurance</topic><topic>Insurance applications</topic><topic>Insurance industry</topic><topic>Mathematical methods</topic><topic>Mathematics</topic><topic>Risk theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapiro, Arnold F.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapiro, Arnold F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy logic in insurance</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2004-10-11</date><risdate>2004</risdate><volume>35</volume><issue>2</issue><spage>399</spage><epage>424</epage><pages>399-424</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>The insurance industry has numerous areas with potential applications for fuzzy logic (FL). These include classification, underwriting, projected liabilities, fuzzy future and present values, pricing, asset allocations and cash flows, and investment. Given this potential and the impetus on FL during the last decade, it is not surprising that a number of FL studies have focused on insurance applications. This article presents an overview of these studies. The specific purposes of the article are two-fold: first, to review FL applications in insurance so as to document the unique characteristics of insurance as an application area; and second, to document the extent to which FL technologies have been employed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2004.07.010</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2004-10, Vol.35 (2), p.399-424
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_37998281
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Actuarial
Fuzzy clustering
Fuzzy inference systems
Fuzzy logic
Fuzzy sets
Insurance
Insurance applications
Insurance industry
Mathematical methods
Mathematics
Risk theory
Studies
title Fuzzy logic in insurance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20logic%20in%20insurance&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Shapiro,%20Arnold%20F.&rft.date=2004-10-11&rft.volume=35&rft.issue=2&rft.spage=399&rft.epage=424&rft.pages=399-424&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2004.07.010&rft_dat=%3Cproquest_cross%3E37998281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208174747&rft_id=info:pmid/&rft_els_id=S0167668704000903&rfr_iscdi=true