Empirical Likelihood-Based Inference in Conditional Moment Restriction Models

This paper proposes an asymptotically efficient method for estimating models with conditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator (MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the information implie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2004-11, Vol.72 (6), p.1667-1714
Hauptverfasser: Kitamura, Yuichi, Tripathi, Gautam, Ahn, Hyungtaik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an asymptotically efficient method for estimating models with conditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator (MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the information implied by the conditional moment restrictions into our empirical likelihood-based procedure. This yields a one-step estimator which avoids estimating optimal instruments. Our likelihood ratio-type statistic for parametric restrictions does not require the estimation of variance, and achieves asymptotic pivotalness implicitly. The estimation and testing procedures we propose are normalization invariant. Simulation results suggest that our new estimator works remarkably well in finite samples.
ISSN:0012-9682
1468-0262
DOI:10.1111/j.1468-0262.2004.00550.x