Bayesian analysis of stochastic volatility models with fat-tails and correlated errors
The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic vol...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2004-09, Vol.122 (1), p.185-212 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Journal of econometrics |
container_volume | 122 |
creator | Jacquier, Eric Polson, Nicholas G. Rossi, Peter E. |
description | The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (J. Business Econom. Statist. 12(4) 371), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called “leverage effect” via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. There is overwhelming evidence of a leverage effect for weekly and daily equity indices. The evidence in favor of fat-tails is very strong for daily exchange rate and equity indices, but less so for weekly data. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL. |
doi_str_mv | 10.1016/j.jeconom.2003.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37951942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407603002732</els_id><sourcerecordid>37951942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-b408c43db04ecf852cb3a3925344ee85ffc6bee3ccb2d18b59af32e3a9809a933</originalsourceid><addsrcrecordid>eNqFkV2r1DAQhosouB79CUIR9K49-WybK9GDHwcPeKPehul0yqa0zZpkV_rvzbKLgjcGJi8JzztM3hTFS85qznhzO9UToV_9UgvGZM1MzRh_VOx414qq6Yx-XOyYZKpSrG2eFs9inBhjWnVyV_x4DxtFB2sJK8xbdLH0YxmTxz3E5LA8-RmSm13aysUPNMfyl0v7coRUJXD5COtQog-BMkdDSSH4EJ8XT0aYI7246k3x_eOHb3efq4evn-7v3j1UqIVOVa9Yh0oOPVOEY6cF9hKkEVoqRdTpccSmJ5KIvRh412sDoxQkwXTMgJHypnhz6XsI_ueRYrKLi0jzDCv5Y7SyNZobJTL46h9w8seQnxwtN03TtKLRGdIXCIOPMdBoD8EtEDbLmT1HbSd7jdqeo7bM2Bx19n25-AIdCP-YKK8LfLISuBB533Jlq8rizpe5DmfttBVc2H1acrfX11EhIsxjgBVd_DuKNrJVnGXu7YXLn0InR8FGdLQiDS4QJjt495-5fwPPVbGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196667265</pqid></control><display><type>article</type><title>Bayesian analysis of stochastic volatility models with fat-tails and correlated errors</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Jacquier, Eric ; Polson, Nicholas G. ; Rossi, Peter E.</creator><creatorcontrib>Jacquier, Eric ; Polson, Nicholas G. ; Rossi, Peter E.</creatorcontrib><description>The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (J. Business Econom. Statist. 12(4) 371), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called “leverage effect” via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. There is overwhelming evidence of a leverage effect for weekly and daily equity indices. The evidence in favor of fat-tails is very strong for daily exchange rate and equity indices, but less so for weekly data. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2003.09.001</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Bayes factor ; Bayesian analysis ; Bayesian method ; Correlation ; Econometrics ; Economic models ; Error ; Exact sciences and technology ; Fat-tails ; GARCH ; Gibbs ; Insurance, economics, finance ; Leverage effect ; Markov processes ; Mathematics ; MCMC ; Metropolis ; Multivariate analysis ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Stochastic analysis ; Stochastic processes ; Stochastic volatility ; Studies ; Volatility</subject><ispartof>Journal of econometrics, 2004-09, Vol.122 (1), p.185-212</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-b408c43db04ecf852cb3a3925344ee85ffc6bee3ccb2d18b59af32e3a9809a933</citedby><cites>FETCH-LOGICAL-c525t-b408c43db04ecf852cb3a3925344ee85ffc6bee3ccb2d18b59af32e3a9809a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407603002732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15937410$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a122_3ay_3a2004_3ai_3a1_3ap_3a185-212.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacquier, Eric</creatorcontrib><creatorcontrib>Polson, Nicholas G.</creatorcontrib><creatorcontrib>Rossi, Peter E.</creatorcontrib><title>Bayesian analysis of stochastic volatility models with fat-tails and correlated errors</title><title>Journal of econometrics</title><description>The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (J. Business Econom. Statist. 12(4) 371), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called “leverage effect” via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. There is overwhelming evidence of a leverage effect for weekly and daily equity indices. The evidence in favor of fat-tails is very strong for daily exchange rate and equity indices, but less so for weekly data. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL.</description><subject>Applications</subject><subject>Bayes factor</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Correlation</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Error</subject><subject>Exact sciences and technology</subject><subject>Fat-tails</subject><subject>GARCH</subject><subject>Gibbs</subject><subject>Insurance, economics, finance</subject><subject>Leverage effect</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>MCMC</subject><subject>Metropolis</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic analysis</subject><subject>Stochastic processes</subject><subject>Stochastic volatility</subject><subject>Studies</subject><subject>Volatility</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkV2r1DAQhosouB79CUIR9K49-WybK9GDHwcPeKPehul0yqa0zZpkV_rvzbKLgjcGJi8JzztM3hTFS85qznhzO9UToV_9UgvGZM1MzRh_VOx414qq6Yx-XOyYZKpSrG2eFs9inBhjWnVyV_x4DxtFB2sJK8xbdLH0YxmTxz3E5LA8-RmSm13aysUPNMfyl0v7coRUJXD5COtQog-BMkdDSSH4EJ8XT0aYI7246k3x_eOHb3efq4evn-7v3j1UqIVOVa9Yh0oOPVOEY6cF9hKkEVoqRdTpccSmJ5KIvRh412sDoxQkwXTMgJHypnhz6XsI_ueRYrKLi0jzDCv5Y7SyNZobJTL46h9w8seQnxwtN03TtKLRGdIXCIOPMdBoD8EtEDbLmT1HbSd7jdqeo7bM2Bx19n25-AIdCP-YKK8LfLISuBB533Jlq8rizpe5DmfttBVc2H1acrfX11EhIsxjgBVd_DuKNrJVnGXu7YXLn0InR8FGdLQiDS4QJjt495-5fwPPVbGo</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Jacquier, Eric</creator><creator>Polson, Nicholas G.</creator><creator>Rossi, Peter E.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20040901</creationdate><title>Bayesian analysis of stochastic volatility models with fat-tails and correlated errors</title><author>Jacquier, Eric ; Polson, Nicholas G. ; Rossi, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-b408c43db04ecf852cb3a3925344ee85ffc6bee3ccb2d18b59af32e3a9809a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Bayes factor</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Correlation</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Error</topic><topic>Exact sciences and technology</topic><topic>Fat-tails</topic><topic>GARCH</topic><topic>Gibbs</topic><topic>Insurance, economics, finance</topic><topic>Leverage effect</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>MCMC</topic><topic>Metropolis</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic analysis</topic><topic>Stochastic processes</topic><topic>Stochastic volatility</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquier, Eric</creatorcontrib><creatorcontrib>Polson, Nicholas G.</creatorcontrib><creatorcontrib>Rossi, Peter E.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacquier, Eric</au><au>Polson, Nicholas G.</au><au>Rossi, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of stochastic volatility models with fat-tails and correlated errors</atitle><jtitle>Journal of econometrics</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>122</volume><issue>1</issue><spage>185</spage><epage>212</epage><pages>185-212</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (J. Business Econom. Statist. 12(4) 371), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called “leverage effect” via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. There is overwhelming evidence of a leverage effect for weekly and daily equity indices. The evidence in favor of fat-tails is very strong for daily exchange rate and equity indices, but less so for weekly data. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2003.09.001</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2004-09, Vol.122 (1), p.185-212 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_37951942 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Applications Bayes factor Bayesian analysis Bayesian method Correlation Econometrics Economic models Error Exact sciences and technology Fat-tails GARCH Gibbs Insurance, economics, finance Leverage effect Markov processes Mathematics MCMC Metropolis Multivariate analysis Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Stochastic analysis Stochastic processes Stochastic volatility Studies Volatility |
title | Bayesian analysis of stochastic volatility models with fat-tails and correlated errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20stochastic%20volatility%20models%20with%20fat-tails%20and%20correlated%20errors&rft.jtitle=Journal%20of%20econometrics&rft.au=Jacquier,%20Eric&rft.date=2004-09-01&rft.volume=122&rft.issue=1&rft.spage=185&rft.epage=212&rft.pages=185-212&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2003.09.001&rft_dat=%3Cproquest_cross%3E37951942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196667265&rft_id=info:pmid/&rft_els_id=S0304407603002732&rfr_iscdi=true |