On the geometry of Nash equilibria and correlated equilibria

It is well known that the set of correlated equilibrium distributions of an n-player noncooperative game is a convex polytope that includes all the Nash equilibrium distributions. We demonstrate an elementary yet surprising result: the Nash equilibria all lie on the boundary of the polytope. Reprint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of game theory 2003-01, Vol.32 (4), p.443-453
Hauptverfasser: Nau, R, Canovas, S Gomez, Hansen, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 4
container_start_page 443
container_title International journal of game theory
container_volume 32
creator Nau, R
Canovas, S Gomez
Hansen, P
description It is well known that the set of correlated equilibrium distributions of an n-player noncooperative game is a convex polytope that includes all the Nash equilibrium distributions. We demonstrate an elementary yet surprising result: the Nash equilibria all lie on the boundary of the polytope. Reprinted by permission of Physica-Verlag
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_37936595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37936595</sourcerecordid><originalsourceid>FETCH-LOGICAL-p629-bf5c7a3c43916c124b5430f563f2a1227406fb4729446fd124d36ab6eceb13933</originalsourceid><addsrcrecordid>eNpNjLtuAjEQAF0kUgjJP7hKd9Ke1w8s0SBEHhIKDT2yfWs4ZM5g3xX5-0RKilRTzGju2AxAQGOE0Q_ssdYzABhYiBlb7gY-nogfKV9oLF88R_7p6onTbepT70vvuBs6HnIplNxI3T_zxO6jS5We_zhn-9fNfv3ebHdvH-vVtrlqYRsfVTAOg0Tb6tAK6ZVEiEpjFK4VwkjQ0UsjrJQ6dj9Bh9p5TYF8ixZxzl5-t9eSbxPV8XDpa6CU3EB5qgc0FrWyCr8BEFNDUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37936595</pqid></control><display><type>article</type><title>On the geometry of Nash equilibria and correlated equilibria</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Nau, R ; Canovas, S Gomez ; Hansen, P</creator><creatorcontrib>Nau, R ; Canovas, S Gomez ; Hansen, P</creatorcontrib><description>It is well known that the set of correlated equilibrium distributions of an n-player noncooperative game is a convex polytope that includes all the Nash equilibrium distributions. We demonstrate an elementary yet surprising result: the Nash equilibria all lie on the boundary of the polytope. Reprinted by permission of Physica-Verlag</description><identifier>ISSN: 0020-7276</identifier><language>eng</language><subject>Economic theory ; Equilibrium ; Game theory ; Games ; Mathematical methods</subject><ispartof>International journal of game theory, 2003-01, Vol.32 (4), p.443-453</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Nau, R</creatorcontrib><creatorcontrib>Canovas, S Gomez</creatorcontrib><creatorcontrib>Hansen, P</creatorcontrib><title>On the geometry of Nash equilibria and correlated equilibria</title><title>International journal of game theory</title><description>It is well known that the set of correlated equilibrium distributions of an n-player noncooperative game is a convex polytope that includes all the Nash equilibrium distributions. We demonstrate an elementary yet surprising result: the Nash equilibria all lie on the boundary of the polytope. Reprinted by permission of Physica-Verlag</description><subject>Economic theory</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Mathematical methods</subject><issn>0020-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpNjLtuAjEQAF0kUgjJP7hKd9Ke1w8s0SBEHhIKDT2yfWs4ZM5g3xX5-0RKilRTzGju2AxAQGOE0Q_ssdYzABhYiBlb7gY-nogfKV9oLF88R_7p6onTbepT70vvuBs6HnIplNxI3T_zxO6jS5We_zhn-9fNfv3ebHdvH-vVtrlqYRsfVTAOg0Tb6tAK6ZVEiEpjFK4VwkjQ0UsjrJQ6dj9Bh9p5TYF8ixZxzl5-t9eSbxPV8XDpa6CU3EB5qgc0FrWyCr8BEFNDUw</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Nau, R</creator><creator>Canovas, S Gomez</creator><creator>Hansen, P</creator><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20030101</creationdate><title>On the geometry of Nash equilibria and correlated equilibria</title><author>Nau, R ; Canovas, S Gomez ; Hansen, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p629-bf5c7a3c43916c124b5430f563f2a1227406fb4729446fd124d36ab6eceb13933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Economic theory</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Mathematical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nau, R</creatorcontrib><creatorcontrib>Canovas, S Gomez</creatorcontrib><creatorcontrib>Hansen, P</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International journal of game theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nau, R</au><au>Canovas, S Gomez</au><au>Hansen, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometry of Nash equilibria and correlated equilibria</atitle><jtitle>International journal of game theory</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>32</volume><issue>4</issue><spage>443</spage><epage>453</epage><pages>443-453</pages><issn>0020-7276</issn><abstract>It is well known that the set of correlated equilibrium distributions of an n-player noncooperative game is a convex polytope that includes all the Nash equilibrium distributions. We demonstrate an elementary yet surprising result: the Nash equilibria all lie on the boundary of the polytope. Reprinted by permission of Physica-Verlag</abstract><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7276
ispartof International journal of game theory, 2003-01, Vol.32 (4), p.443-453
issn 0020-7276
language eng
recordid cdi_proquest_miscellaneous_37936595
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Economic theory
Equilibrium
Game theory
Games
Mathematical methods
title On the geometry of Nash equilibria and correlated equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometry%20of%20Nash%20equilibria%20and%20correlated%20equilibria&rft.jtitle=International%20journal%20of%20game%20theory&rft.au=Nau,%20R&rft.date=2003-01-01&rft.volume=32&rft.issue=4&rft.spage=443&rft.epage=453&rft.pages=443-453&rft.issn=0020-7276&rft_id=info:doi/&rft_dat=%3Cproquest%3E37936595%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37936595&rft_id=info:pmid/&rfr_iscdi=true