Analysis of heterogeneous endowment policies portfolios under fractional approximations

In this paper we consider heterogeneous portfolios of endowment insurance policies with a 12 months maturation time. We apply majorization order, Schur functions, and fractional approximations to study the effects of statistical heterogeneity on the premium, on the death benefit and on the survival...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2003-12, Vol.33 (3), p.567-584
Hauptverfasser: Dahan, Merav, Frostig, Esther, Langberg, Naftali A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 3
container_start_page 567
container_title Insurance, mathematics & economics
container_volume 33
creator Dahan, Merav
Frostig, Esther
Langberg, Naftali A.
description In this paper we consider heterogeneous portfolios of endowment insurance policies with a 12 months maturation time. We apply majorization order, Schur functions, and fractional approximations to study the effects of statistical heterogeneity on the premium, on the death benefit and on the survival benefit of the endowment contract. We obtain upper and lower bounds for the premium and the benefits, and under the power approximation we derive some monotone properties of the premium and the benefits.
doi_str_mv 10.1016/j.insmatheco.2003.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37920170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668703001756</els_id><sourcerecordid>768780541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2af8922c07c1a261051a5d5a70aeab367782457426a9296396452080c85588853</originalsourceid><addsrcrecordid>eNqFUE1P3DAQtaoidQv9D1EP3BL8EX_kCKgfVEhcWnG0XGfS9SqJg-1Q9t8zy1ZU6qWHZ89Y7z3PPEIqRhtGmbrYNWHOkytb8LHhlIqGmoZS9oZsmNGilp3s3pINUnWtlNHvyPucdxQZndIbcn85u3GfQ67iUG2hQIq_YIa45grmPv6eYC7VEsfgA2QsUhmwibla5x5SNSTnS4joUbllSfEp4CjY5zNyMrgxw4c_9yn58fnT9-uv9e3dl5vry9vat5qXmrvBdJx7qj1zXDEqmZO9dJo6cD-F0trwVuqWK9fxTolOtZJTQ72R0hgjxSk5P_ri5w8r5GKnkD2Mo3tZwgrdcco0ReLHf4i7uCYcPFs0ZFpJYZBkjiSfYs4JBrsk3CjtLaP2ELfd2b9x20PclhqLYaL021GaYAH_qgMAFKyTs49WOCHw2CNelMKFwxtiQUilrTSt3ZYJza6OZoDRPQZINmP-s4c-JPDF9jH8f6JnwO-nfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208176538</pqid></control><display><type>article</type><title>Analysis of heterogeneous endowment policies portfolios under fractional approximations</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dahan, Merav ; Frostig, Esther ; Langberg, Naftali A.</creator><creatorcontrib>Dahan, Merav ; Frostig, Esther ; Langberg, Naftali A.</creatorcontrib><description>In this paper we consider heterogeneous portfolios of endowment insurance policies with a 12 months maturation time. We apply majorization order, Schur functions, and fractional approximations to study the effects of statistical heterogeneity on the premium, on the death benefit and on the survival benefit of the endowment contract. We obtain upper and lower bounds for the premium and the benefits, and under the power approximation we derive some monotone properties of the premium and the benefits.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2003.08.001</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Bounds ; Economics ; Endowment ; Endowment insurance ; Insurance ; Insurance policies ; Linear mortality approximation ; Majorization ; Mathematical analysis ; Mathematical models ; Mathematics ; Monotonicity ; Portfolio management ; Power approximation ; Schur-convex and concave functions ; Studies</subject><ispartof>Insurance, mathematics &amp; economics, 2003-12, Vol.33 (3), p.567-584</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 19, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2af8922c07c1a261051a5d5a70aeab367782457426a9296396452080c85588853</citedby><cites>FETCH-LOGICAL-c472t-2af8922c07c1a261051a5d5a70aeab367782457426a9296396452080c85588853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668703001756$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a33_3ay_3a2003_3ai_3a3_3ap_3a567-584.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahan, Merav</creatorcontrib><creatorcontrib>Frostig, Esther</creatorcontrib><creatorcontrib>Langberg, Naftali A.</creatorcontrib><title>Analysis of heterogeneous endowment policies portfolios under fractional approximations</title><title>Insurance, mathematics &amp; economics</title><description>In this paper we consider heterogeneous portfolios of endowment insurance policies with a 12 months maturation time. We apply majorization order, Schur functions, and fractional approximations to study the effects of statistical heterogeneity on the premium, on the death benefit and on the survival benefit of the endowment contract. We obtain upper and lower bounds for the premium and the benefits, and under the power approximation we derive some monotone properties of the premium and the benefits.</description><subject>Approximation</subject><subject>Bounds</subject><subject>Economics</subject><subject>Endowment</subject><subject>Endowment insurance</subject><subject>Insurance</subject><subject>Insurance policies</subject><subject>Linear mortality approximation</subject><subject>Majorization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Monotonicity</subject><subject>Portfolio management</subject><subject>Power approximation</subject><subject>Schur-convex and concave functions</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1P3DAQtaoidQv9D1EP3BL8EX_kCKgfVEhcWnG0XGfS9SqJg-1Q9t8zy1ZU6qWHZ89Y7z3PPEIqRhtGmbrYNWHOkytb8LHhlIqGmoZS9oZsmNGilp3s3pINUnWtlNHvyPucdxQZndIbcn85u3GfQ67iUG2hQIq_YIa45grmPv6eYC7VEsfgA2QsUhmwibla5x5SNSTnS4joUbllSfEp4CjY5zNyMrgxw4c_9yn58fnT9-uv9e3dl5vry9vat5qXmrvBdJx7qj1zXDEqmZO9dJo6cD-F0trwVuqWK9fxTolOtZJTQ72R0hgjxSk5P_ri5w8r5GKnkD2Mo3tZwgrdcco0ReLHf4i7uCYcPFs0ZFpJYZBkjiSfYs4JBrsk3CjtLaP2ELfd2b9x20PclhqLYaL021GaYAH_qgMAFKyTs49WOCHw2CNelMKFwxtiQUilrTSt3ZYJza6OZoDRPQZINmP-s4c-JPDF9jH8f6JnwO-nfA</recordid><startdate>20031219</startdate><enddate>20031219</enddate><creator>Dahan, Merav</creator><creator>Frostig, Esther</creator><creator>Langberg, Naftali A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20031219</creationdate><title>Analysis of heterogeneous endowment policies portfolios under fractional approximations</title><author>Dahan, Merav ; Frostig, Esther ; Langberg, Naftali A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2af8922c07c1a261051a5d5a70aeab367782457426a9296396452080c85588853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Approximation</topic><topic>Bounds</topic><topic>Economics</topic><topic>Endowment</topic><topic>Endowment insurance</topic><topic>Insurance</topic><topic>Insurance policies</topic><topic>Linear mortality approximation</topic><topic>Majorization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Monotonicity</topic><topic>Portfolio management</topic><topic>Power approximation</topic><topic>Schur-convex and concave functions</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahan, Merav</creatorcontrib><creatorcontrib>Frostig, Esther</creatorcontrib><creatorcontrib>Langberg, Naftali A.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahan, Merav</au><au>Frostig, Esther</au><au>Langberg, Naftali A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of heterogeneous endowment policies portfolios under fractional approximations</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2003-12-19</date><risdate>2003</risdate><volume>33</volume><issue>3</issue><spage>567</spage><epage>584</epage><pages>567-584</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In this paper we consider heterogeneous portfolios of endowment insurance policies with a 12 months maturation time. We apply majorization order, Schur functions, and fractional approximations to study the effects of statistical heterogeneity on the premium, on the death benefit and on the survival benefit of the endowment contract. We obtain upper and lower bounds for the premium and the benefits, and under the power approximation we derive some monotone properties of the premium and the benefits.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2003.08.001</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2003-12, Vol.33 (3), p.567-584
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_37920170
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Approximation
Bounds
Economics
Endowment
Endowment insurance
Insurance
Insurance policies
Linear mortality approximation
Majorization
Mathematical analysis
Mathematical models
Mathematics
Monotonicity
Portfolio management
Power approximation
Schur-convex and concave functions
Studies
title Analysis of heterogeneous endowment policies portfolios under fractional approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20heterogeneous%20endowment%20policies%20portfolios%20under%20fractional%20approximations&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Dahan,%20Merav&rft.date=2003-12-19&rft.volume=33&rft.issue=3&rft.spage=567&rft.epage=584&rft.pages=567-584&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2003.08.001&rft_dat=%3Cproquest_cross%3E768780541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208176538&rft_id=info:pmid/&rft_els_id=S0167668703001756&rfr_iscdi=true