Pricing of arithmetic basket options by conditioning

Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2004-02, Vol.34 (1), p.55-77
Hauptverfasser: Deelstra, G., Liinev, J., Vanmaele, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 55
container_title Insurance, mathematics & economics
container_volume 34
creator Deelstra, G.
Liinev, J.
Vanmaele, M.
description Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.
doi_str_mv 10.1016/j.insmatheco.2003.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37886480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668703002282</els_id><sourcerecordid>37886480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</originalsourceid><addsrcrecordid>eNqFkEtv1DAUhS1EpQ4t_yFiwS7Bj8SPJVTQIlWCBawtx7nueJjEwfZUmn_PjQaBxIbFsa-t71wdHUIaRjtGmXx36OJSZlf34FPHKRUdYx2l_AXZMa1EO5jBvCQ7RFUrpVbX5FUpB0opM1LtSP81Rx-XpyaFxuVY9zPU6JvRlR9Qm7TWmJbSjOfGp2WK2wvhW3IV3LHA69_3Dfn-6eO3u4f28cv957v3j60ftKxt4MFMo9IheCf5sCUx-MVV6JUL08BFr5kZvXHahJGNznjhOZu0dmIErsUNeXvZu-b08wSl2jkWD8ejWyCdihVKa9lriuCbf8BDOuUFs1lONZO9HCRC-gL5nErJEOya4-zy2TJqty7twf7t0m5dWsYsdonWh4s1wwr-jw8A0HCanX22wokejzMKndsYUQy1oobBKmX3dcZVHy6rAIt7jpBt8REWD1PM4KudUvx_nl-fBZr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208164656</pqid></control><display><type>article</type><title>Pricing of arithmetic basket options by conditioning</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Deelstra, G. ; Liinev, J. ; Vanmaele, M.</creator><creatorcontrib>Deelstra, G. ; Liinev, J. ; Vanmaele, M.</creatorcontrib><description>Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2003.11.002</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical bounds ; Asian basket option ; Basket option ; Black and Scholes model ; Comonotonicity ; Economic theory ; Economics ; Insurance ; Mathematical models ; Model testing ; Moment matching ; Price theory ; Prices ; Pricing ; Studies ; Variables</subject><ispartof>Insurance, mathematics &amp; economics, 2004-02, Vol.34 (1), p.55-77</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 20, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</citedby><cites>FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2003.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a34_3ay_3a2004_3ai_3a1_3ap_3a55-77.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Deelstra, G.</creatorcontrib><creatorcontrib>Liinev, J.</creatorcontrib><creatorcontrib>Vanmaele, M.</creatorcontrib><title>Pricing of arithmetic basket options by conditioning</title><title>Insurance, mathematics &amp; economics</title><description>Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.</description><subject>Analytical bounds</subject><subject>Asian basket option</subject><subject>Basket option</subject><subject>Black and Scholes model</subject><subject>Comonotonicity</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Insurance</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Moment matching</subject><subject>Price theory</subject><subject>Prices</subject><subject>Pricing</subject><subject>Studies</subject><subject>Variables</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtv1DAUhS1EpQ4t_yFiwS7Bj8SPJVTQIlWCBawtx7nueJjEwfZUmn_PjQaBxIbFsa-t71wdHUIaRjtGmXx36OJSZlf34FPHKRUdYx2l_AXZMa1EO5jBvCQ7RFUrpVbX5FUpB0opM1LtSP81Rx-XpyaFxuVY9zPU6JvRlR9Qm7TWmJbSjOfGp2WK2wvhW3IV3LHA69_3Dfn-6eO3u4f28cv957v3j60ftKxt4MFMo9IheCf5sCUx-MVV6JUL08BFr5kZvXHahJGNznjhOZu0dmIErsUNeXvZu-b08wSl2jkWD8ejWyCdihVKa9lriuCbf8BDOuUFs1lONZO9HCRC-gL5nErJEOya4-zy2TJqty7twf7t0m5dWsYsdonWh4s1wwr-jw8A0HCanX22wokejzMKndsYUQy1oobBKmX3dcZVHy6rAIt7jpBt8REWD1PM4KudUvx_nl-fBZr1</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Deelstra, G.</creator><creator>Liinev, J.</creator><creator>Vanmaele, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20040201</creationdate><title>Pricing of arithmetic basket options by conditioning</title><author>Deelstra, G. ; Liinev, J. ; Vanmaele, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical bounds</topic><topic>Asian basket option</topic><topic>Basket option</topic><topic>Black and Scholes model</topic><topic>Comonotonicity</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Insurance</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Moment matching</topic><topic>Price theory</topic><topic>Prices</topic><topic>Pricing</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deelstra, G.</creatorcontrib><creatorcontrib>Liinev, J.</creatorcontrib><creatorcontrib>Vanmaele, M.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deelstra, G.</au><au>Liinev, J.</au><au>Vanmaele, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pricing of arithmetic basket options by conditioning</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>34</volume><issue>1</issue><spage>55</spage><epage>77</epage><pages>55-77</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2003.11.002</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2004-02, Vol.34 (1), p.55-77
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_37886480
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Analytical bounds
Asian basket option
Basket option
Black and Scholes model
Comonotonicity
Economic theory
Economics
Insurance
Mathematical models
Model testing
Moment matching
Price theory
Prices
Pricing
Studies
Variables
title Pricing of arithmetic basket options by conditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pricing%20of%20arithmetic%20basket%20options%20by%20conditioning&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Deelstra,%20G.&rft.date=2004-02-01&rft.volume=34&rft.issue=1&rft.spage=55&rft.epage=77&rft.pages=55-77&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2003.11.002&rft_dat=%3Cproquest_cross%3E37886480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208164656&rft_id=info:pmid/&rft_els_id=S0167668703002282&rfr_iscdi=true