Pricing of arithmetic basket options by conditioning
Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of wh...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2004-02, Vol.34 (1), p.55-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Insurance, mathematics & economics |
container_volume | 34 |
creator | Deelstra, G. Liinev, J. Vanmaele, M. |
description | Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method. |
doi_str_mv | 10.1016/j.insmatheco.2003.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37886480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668703002282</els_id><sourcerecordid>37886480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</originalsourceid><addsrcrecordid>eNqFkEtv1DAUhS1EpQ4t_yFiwS7Bj8SPJVTQIlWCBawtx7nueJjEwfZUmn_PjQaBxIbFsa-t71wdHUIaRjtGmXx36OJSZlf34FPHKRUdYx2l_AXZMa1EO5jBvCQ7RFUrpVbX5FUpB0opM1LtSP81Rx-XpyaFxuVY9zPU6JvRlR9Qm7TWmJbSjOfGp2WK2wvhW3IV3LHA69_3Dfn-6eO3u4f28cv957v3j60ftKxt4MFMo9IheCf5sCUx-MVV6JUL08BFr5kZvXHahJGNznjhOZu0dmIErsUNeXvZu-b08wSl2jkWD8ejWyCdihVKa9lriuCbf8BDOuUFs1lONZO9HCRC-gL5nErJEOya4-zy2TJqty7twf7t0m5dWsYsdonWh4s1wwr-jw8A0HCanX22wokejzMKndsYUQy1oobBKmX3dcZVHy6rAIt7jpBt8REWD1PM4KudUvx_nl-fBZr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208164656</pqid></control><display><type>article</type><title>Pricing of arithmetic basket options by conditioning</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Deelstra, G. ; Liinev, J. ; Vanmaele, M.</creator><creatorcontrib>Deelstra, G. ; Liinev, J. ; Vanmaele, M.</creatorcontrib><description>Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2003.11.002</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical bounds ; Asian basket option ; Basket option ; Black and Scholes model ; Comonotonicity ; Economic theory ; Economics ; Insurance ; Mathematical models ; Model testing ; Moment matching ; Price theory ; Prices ; Pricing ; Studies ; Variables</subject><ispartof>Insurance, mathematics & economics, 2004-02, Vol.34 (1), p.55-77</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 20, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</citedby><cites>FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2003.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a34_3ay_3a2004_3ai_3a1_3ap_3a55-77.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Deelstra, G.</creatorcontrib><creatorcontrib>Liinev, J.</creatorcontrib><creatorcontrib>Vanmaele, M.</creatorcontrib><title>Pricing of arithmetic basket options by conditioning</title><title>Insurance, mathematics & economics</title><description>Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.</description><subject>Analytical bounds</subject><subject>Asian basket option</subject><subject>Basket option</subject><subject>Black and Scholes model</subject><subject>Comonotonicity</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Insurance</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Moment matching</subject><subject>Price theory</subject><subject>Prices</subject><subject>Pricing</subject><subject>Studies</subject><subject>Variables</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtv1DAUhS1EpQ4t_yFiwS7Bj8SPJVTQIlWCBawtx7nueJjEwfZUmn_PjQaBxIbFsa-t71wdHUIaRjtGmXx36OJSZlf34FPHKRUdYx2l_AXZMa1EO5jBvCQ7RFUrpVbX5FUpB0opM1LtSP81Rx-XpyaFxuVY9zPU6JvRlR9Qm7TWmJbSjOfGp2WK2wvhW3IV3LHA69_3Dfn-6eO3u4f28cv957v3j60ftKxt4MFMo9IheCf5sCUx-MVV6JUL08BFr5kZvXHahJGNznjhOZu0dmIErsUNeXvZu-b08wSl2jkWD8ejWyCdihVKa9lriuCbf8BDOuUFs1lONZO9HCRC-gL5nErJEOya4-zy2TJqty7twf7t0m5dWsYsdonWh4s1wwr-jw8A0HCanX22wokejzMKndsYUQy1oobBKmX3dcZVHy6rAIt7jpBt8REWD1PM4KudUvx_nl-fBZr1</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Deelstra, G.</creator><creator>Liinev, J.</creator><creator>Vanmaele, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20040201</creationdate><title>Pricing of arithmetic basket options by conditioning</title><author>Deelstra, G. ; Liinev, J. ; Vanmaele, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-f2f9db78ffca625595992f927f47afd5234819bc9a89fb1ba9c3c21d88a3be283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical bounds</topic><topic>Asian basket option</topic><topic>Basket option</topic><topic>Black and Scholes model</topic><topic>Comonotonicity</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Insurance</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Moment matching</topic><topic>Price theory</topic><topic>Prices</topic><topic>Pricing</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deelstra, G.</creatorcontrib><creatorcontrib>Liinev, J.</creatorcontrib><creatorcontrib>Vanmaele, M.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deelstra, G.</au><au>Liinev, J.</au><au>Vanmaele, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pricing of arithmetic basket options by conditioning</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>34</volume><issue>1</issue><spage>55</spage><epage>77</epage><pages>55-77</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>Determining the price of a basket option is not a trivial task, because there is no explicit analytical expression available for the distribution of the weighted sum of prices of the assets in the basket. However, by using a conditioning variable, this price can be decomposed in two parts, one of which can be computed exactly. For the remaining part we first derive a lower and an upper bound based on comonotonicity, and another upper bound equal to that lower bound plus an error term. Secondly, we derive an approximation by applying some moment matching method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2003.11.002</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2004-02, Vol.34 (1), p.55-77 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_37886480 |
source | RePEc; ScienceDirect Journals (5 years ago - present) |
subjects | Analytical bounds Asian basket option Basket option Black and Scholes model Comonotonicity Economic theory Economics Insurance Mathematical models Model testing Moment matching Price theory Prices Pricing Studies Variables |
title | Pricing of arithmetic basket options by conditioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pricing%20of%20arithmetic%20basket%20options%20by%20conditioning&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Deelstra,%20G.&rft.date=2004-02-01&rft.volume=34&rft.issue=1&rft.spage=55&rft.epage=77&rft.pages=55-77&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2003.11.002&rft_dat=%3Cproquest_cross%3E37886480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208164656&rft_id=info:pmid/&rft_els_id=S0167668703002282&rfr_iscdi=true |