Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates

Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency optio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2004-01, Vol.14 (1), p.49-78
Hauptverfasser: Gorovoi, Viatcheslav, Linetsky, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 49
container_title Mathematical finance
container_volume 14
creator Gorovoi, Viatcheslav
Linetsky, Vadim
description Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.
doi_str_mv 10.1111/j.0960-1627.2004.00181.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37880330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37880330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhSMEEkvhP_gEFxLs2ImdA4ey2m23aqmEQEhchokzptlmkzTOwu6_x2mqPXDC0tge-33P1osiJngiwviwTXiR81jkqU5SzlXCuTAiOTyLFkLlOi6KPHseLU6il9Er77c8KJXSi-jnpwbt_TvPbrqKGtY5tmlHGsiP7AuO5Bl6dtuPddf692xV_6LW7Vs79Wx16LH10w3DtmJXGFry9I_B6-iFw8bTm6f1LPq2Xn1dXsbXtxeb5fl1bPNUiriy1hQ5OSKsOGLJc0W6cg4lZi7LMkXIrdJpWTiLqkhtKVUmKTdOa0elk2fR29m3H7qHfXgedrW31DThU93eg9TGcCl5EJpZaIfO-4Ec9EO9w-EIgsMUKWxhSgumtGCKFB4jhUNAL2d0oJ7siSsb3OF452r4DRKFCtMx1CMqsZ7OQvWhVAHawN24C1YfZ6s_dUPH__4C3JyvN2EX-Hjmaz_S4cTjcA-5ljqD758v4Icwy8zINWj5FyzKpiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37880330</pqid></control><display><type>article</type><title>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Gorovoi, Viatcheslav ; Linetsky, Vadim</creator><creatorcontrib>Gorovoi, Viatcheslav ; Linetsky, Vadim</creatorcontrib><description>Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/j.0960-1627.2004.00181.x</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK: Blackwell Publishers, Inc</publisher><subject>area functional ; bond options ; Bonds ; Capital market ; CIR model ; eigenfunction expansion ; Finance ; interest rate models ; Interest rates ; Japan ; Mathematical methods ; Term structure ; Vasicek model</subject><ispartof>Mathematical finance, 2004-01, Vol.14 (1), p.49-78</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</citedby><cites>FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.0960-1627.2004.00181.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.0960-1627.2004.00181.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3993,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a14_3ay_3a2004_3ai_3a1_3ap_3a49-78.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorovoi, Viatcheslav</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><title>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</title><title>Mathematical finance</title><description>Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.</description><subject>area functional</subject><subject>bond options</subject><subject>Bonds</subject><subject>Capital market</subject><subject>CIR model</subject><subject>eigenfunction expansion</subject><subject>Finance</subject><subject>interest rate models</subject><subject>Interest rates</subject><subject>Japan</subject><subject>Mathematical methods</subject><subject>Term structure</subject><subject>Vasicek model</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkEFv1DAQhSMEEkvhP_gEFxLs2ImdA4ey2m23aqmEQEhchokzptlmkzTOwu6_x2mqPXDC0tge-33P1osiJngiwviwTXiR81jkqU5SzlXCuTAiOTyLFkLlOi6KPHseLU6il9Er77c8KJXSi-jnpwbt_TvPbrqKGtY5tmlHGsiP7AuO5Bl6dtuPddf692xV_6LW7Vs79Wx16LH10w3DtmJXGFry9I_B6-iFw8bTm6f1LPq2Xn1dXsbXtxeb5fl1bPNUiriy1hQ5OSKsOGLJc0W6cg4lZi7LMkXIrdJpWTiLqkhtKVUmKTdOa0elk2fR29m3H7qHfXgedrW31DThU93eg9TGcCl5EJpZaIfO-4Ec9EO9w-EIgsMUKWxhSgumtGCKFB4jhUNAL2d0oJ7siSsb3OF452r4DRKFCtMx1CMqsZ7OQvWhVAHawN24C1YfZ6s_dUPH__4C3JyvN2EX-Hjmaz_S4cTjcA-5ljqD758v4Icwy8zINWj5FyzKpiA</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Gorovoi, Viatcheslav</creator><creator>Linetsky, Vadim</creator><general>Blackwell Publishers, Inc</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200401</creationdate><title>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</title><author>Gorovoi, Viatcheslav ; Linetsky, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>area functional</topic><topic>bond options</topic><topic>Bonds</topic><topic>Capital market</topic><topic>CIR model</topic><topic>eigenfunction expansion</topic><topic>Finance</topic><topic>interest rate models</topic><topic>Interest rates</topic><topic>Japan</topic><topic>Mathematical methods</topic><topic>Term structure</topic><topic>Vasicek model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorovoi, Viatcheslav</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorovoi, Viatcheslav</au><au>Linetsky, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</atitle><jtitle>Mathematical finance</jtitle><date>2004-01</date><risdate>2004</risdate><volume>14</volume><issue>1</issue><spage>49</spage><epage>78</epage><pages>49-78</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.</abstract><cop>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/j.0960-1627.2004.00181.x</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2004-01, Vol.14 (1), p.49-78
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_miscellaneous_37880330
source RePEc; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects area functional
bond options
Bonds
Capital market
CIR model
eigenfunction expansion
Finance
interest rate models
Interest rates
Japan
Mathematical methods
Term structure
Vasicek model
title Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black's%20Model%20of%20Interest%20Rates%20as%20Options,%20Eigenfunction%20Expansions%20and%20Japanese%20Interest%20Rates&rft.jtitle=Mathematical%20finance&rft.au=Gorovoi,%20Viatcheslav&rft.date=2004-01&rft.volume=14&rft.issue=1&rft.spage=49&rft.epage=78&rft.pages=49-78&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/j.0960-1627.2004.00181.x&rft_dat=%3Cproquest_cross%3E37880330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37880330&rft_id=info:pmid/&rfr_iscdi=true