Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates
Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency optio...
Gespeichert in:
Veröffentlicht in: | Mathematical finance 2004-01, Vol.14 (1), p.49-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Mathematical finance |
container_volume | 14 |
creator | Gorovoi, Viatcheslav Linetsky, Vadim |
description | Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative. |
doi_str_mv | 10.1111/j.0960-1627.2004.00181.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37880330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37880330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhSMEEkvhP_gEFxLs2ImdA4ey2m23aqmEQEhchokzptlmkzTOwu6_x2mqPXDC0tge-33P1osiJngiwviwTXiR81jkqU5SzlXCuTAiOTyLFkLlOi6KPHseLU6il9Er77c8KJXSi-jnpwbt_TvPbrqKGtY5tmlHGsiP7AuO5Bl6dtuPddf692xV_6LW7Vs79Wx16LH10w3DtmJXGFry9I_B6-iFw8bTm6f1LPq2Xn1dXsbXtxeb5fl1bPNUiriy1hQ5OSKsOGLJc0W6cg4lZi7LMkXIrdJpWTiLqkhtKVUmKTdOa0elk2fR29m3H7qHfXgedrW31DThU93eg9TGcCl5EJpZaIfO-4Ec9EO9w-EIgsMUKWxhSgumtGCKFB4jhUNAL2d0oJ7siSsb3OF452r4DRKFCtMx1CMqsZ7OQvWhVAHawN24C1YfZ6s_dUPH__4C3JyvN2EX-Hjmaz_S4cTjcA-5ljqD758v4Icwy8zINWj5FyzKpiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37880330</pqid></control><display><type>article</type><title>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Gorovoi, Viatcheslav ; Linetsky, Vadim</creator><creatorcontrib>Gorovoi, Viatcheslav ; Linetsky, Vadim</creatorcontrib><description>Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/j.0960-1627.2004.00181.x</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK: Blackwell Publishers, Inc</publisher><subject>area functional ; bond options ; Bonds ; Capital market ; CIR model ; eigenfunction expansion ; Finance ; interest rate models ; Interest rates ; Japan ; Mathematical methods ; Term structure ; Vasicek model</subject><ispartof>Mathematical finance, 2004-01, Vol.14 (1), p.49-78</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</citedby><cites>FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.0960-1627.2004.00181.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.0960-1627.2004.00181.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3993,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a14_3ay_3a2004_3ai_3a1_3ap_3a49-78.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorovoi, Viatcheslav</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><title>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</title><title>Mathematical finance</title><description>Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.</description><subject>area functional</subject><subject>bond options</subject><subject>Bonds</subject><subject>Capital market</subject><subject>CIR model</subject><subject>eigenfunction expansion</subject><subject>Finance</subject><subject>interest rate models</subject><subject>Interest rates</subject><subject>Japan</subject><subject>Mathematical methods</subject><subject>Term structure</subject><subject>Vasicek model</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkEFv1DAQhSMEEkvhP_gEFxLs2ImdA4ey2m23aqmEQEhchokzptlmkzTOwu6_x2mqPXDC0tge-33P1osiJngiwviwTXiR81jkqU5SzlXCuTAiOTyLFkLlOi6KPHseLU6il9Er77c8KJXSi-jnpwbt_TvPbrqKGtY5tmlHGsiP7AuO5Bl6dtuPddf692xV_6LW7Vs79Wx16LH10w3DtmJXGFry9I_B6-iFw8bTm6f1LPq2Xn1dXsbXtxeb5fl1bPNUiriy1hQ5OSKsOGLJc0W6cg4lZi7LMkXIrdJpWTiLqkhtKVUmKTdOa0elk2fR29m3H7qHfXgedrW31DThU93eg9TGcCl5EJpZaIfO-4Ec9EO9w-EIgsMUKWxhSgumtGCKFB4jhUNAL2d0oJ7siSsb3OF452r4DRKFCtMx1CMqsZ7OQvWhVAHawN24C1YfZ6s_dUPH__4C3JyvN2EX-Hjmaz_S4cTjcA-5ljqD758v4Icwy8zINWj5FyzKpiA</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Gorovoi, Viatcheslav</creator><creator>Linetsky, Vadim</creator><general>Blackwell Publishers, Inc</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200401</creationdate><title>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</title><author>Gorovoi, Viatcheslav ; Linetsky, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6231-dcc896efeead0aab064e7dffa3a5f5554ea0c472b9fca492cb3453e68f77febf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>area functional</topic><topic>bond options</topic><topic>Bonds</topic><topic>Capital market</topic><topic>CIR model</topic><topic>eigenfunction expansion</topic><topic>Finance</topic><topic>interest rate models</topic><topic>Interest rates</topic><topic>Japan</topic><topic>Mathematical methods</topic><topic>Term structure</topic><topic>Vasicek model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorovoi, Viatcheslav</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorovoi, Viatcheslav</au><au>Linetsky, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates</atitle><jtitle>Mathematical finance</jtitle><date>2004-01</date><risdate>2004</risdate><volume>14</volume><issue>1</issue><spage>49</spage><epage>78</epage><pages>49-78</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995). When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.</abstract><cop>350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK</cop><pub>Blackwell Publishers, Inc</pub><doi>10.1111/j.0960-1627.2004.00181.x</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1627 |
ispartof | Mathematical finance, 2004-01, Vol.14 (1), p.49-78 |
issn | 0960-1627 1467-9965 |
language | eng |
recordid | cdi_proquest_miscellaneous_37880330 |
source | RePEc; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | area functional bond options Bonds Capital market CIR model eigenfunction expansion Finance interest rate models Interest rates Japan Mathematical methods Term structure Vasicek model |
title | Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black's%20Model%20of%20Interest%20Rates%20as%20Options,%20Eigenfunction%20Expansions%20and%20Japanese%20Interest%20Rates&rft.jtitle=Mathematical%20finance&rft.au=Gorovoi,%20Viatcheslav&rft.date=2004-01&rft.volume=14&rft.issue=1&rft.spage=49&rft.epage=78&rft.pages=49-78&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/j.0960-1627.2004.00181.x&rft_dat=%3Cproquest_cross%3E37880330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37880330&rft_id=info:pmid/&rfr_iscdi=true |