Nonparametric estimation of regression functions with both categorical and continuous data

In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2004-03, Vol.119 (1), p.99-130
Hauptverfasser: Racine, Jeff, Li, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 1
container_start_page 99
container_title Journal of econometrics
container_volume 119
creator Racine, Jeff
Li, Qi
description In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.
doi_str_mv 10.1016/S0304-4076(03)00157-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37877064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440760300157X</els_id><sourcerecordid>37877064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</originalsourceid><addsrcrecordid>eNqFkF1rFjEQhRdR8LX6E4RFUPRidbL52lyJFD8peqFC8SYk2Wyb8m6yTbKV_ntn-5YK3hiYCRnOGU6epnlK4DUBIt58BwqsYyDFS6CvAAiX3em9ZkcG2XdiUPx-s7uTPGwelXIBAJwNdNf8-priYrKZfc3Btb7UMJsaUmzT1GZ_ln0p22tao9vGpf0d6nlrEzZnqj9LaDP71sSxdSnWENe0lnY01TxuHkxmX_yT2_uo-fnh_Y_jT93Jt4-fj9-ddI5LUTs5WD4R6QzwfhgYwTb0jg_UWmaFEor01PTMEjsCUYJYpSg4RkdDLevNRI-aF4e9S06XK_5Az6E4v9-b6DGLpnKQEgRD4bN_hBdpzRGzaVwsBEjGUcQPIpdTKdlPesmIJF9rAnrDrW9w642lBqpvcOtT9H05-LJfvLszeTzIJc36SlNDiMJ-jdUD7qAmbEOsBUspTSjo8zrjsue3SU1BulM20YXyNwnnwASRqHt70HnkexV81sUFH50fQ_au6jGF_8T-Az5drVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196660745</pqid></control><display><type>article</type><title>Nonparametric estimation of regression functions with both categorical and continuous data</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Racine, Jeff ; Li, Qi</creator><creatorcontrib>Racine, Jeff ; Li, Qi</creatorcontrib><description>In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(03)00157-X</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Asymptotic normality ; Cross-validation ; Discrete variables ; Dynamic models ; Econometrics ; Estimating techniques ; Estimation ; Exact sciences and technology ; Factor analysis ; Insurance, economics, finance ; Mathematics ; Nonparametric smoothing ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Simulation ; Statistics ; Studies</subject><ispartof>Journal of econometrics, 2004-03, Vol.119 (1), p.99-130</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</citedby><cites>FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030440760300157X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15504617$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a119_3ay_3a2004_3ai_3a1_3ap_3a99-130.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Racine, Jeff</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><title>Nonparametric estimation of regression functions with both categorical and continuous data</title><title>Journal of econometrics</title><description>In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.</description><subject>Applications</subject><subject>Asymptotic normality</subject><subject>Cross-validation</subject><subject>Discrete variables</subject><subject>Dynamic models</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Factor analysis</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Nonparametric smoothing</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkF1rFjEQhRdR8LX6E4RFUPRidbL52lyJFD8peqFC8SYk2Wyb8m6yTbKV_ntn-5YK3hiYCRnOGU6epnlK4DUBIt58BwqsYyDFS6CvAAiX3em9ZkcG2XdiUPx-s7uTPGwelXIBAJwNdNf8-priYrKZfc3Btb7UMJsaUmzT1GZ_ln0p22tao9vGpf0d6nlrEzZnqj9LaDP71sSxdSnWENe0lnY01TxuHkxmX_yT2_uo-fnh_Y_jT93Jt4-fj9-ddI5LUTs5WD4R6QzwfhgYwTb0jg_UWmaFEor01PTMEjsCUYJYpSg4RkdDLevNRI-aF4e9S06XK_5Az6E4v9-b6DGLpnKQEgRD4bN_hBdpzRGzaVwsBEjGUcQPIpdTKdlPesmIJF9rAnrDrW9w642lBqpvcOtT9H05-LJfvLszeTzIJc36SlNDiMJ-jdUD7qAmbEOsBUspTSjo8zrjsue3SU1BulM20YXyNwnnwASRqHt70HnkexV81sUFH50fQ_au6jGF_8T-Az5drVI</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Racine, Jeff</creator><creator>Li, Qi</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20040301</creationdate><title>Nonparametric estimation of regression functions with both categorical and continuous data</title><author>Racine, Jeff ; Li, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Asymptotic normality</topic><topic>Cross-validation</topic><topic>Discrete variables</topic><topic>Dynamic models</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Factor analysis</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Nonparametric smoothing</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Racine, Jeff</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Racine, Jeff</au><au>Li, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of regression functions with both categorical and continuous data</atitle><jtitle>Journal of econometrics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>119</volume><issue>1</issue><spage>99</spage><epage>130</epage><pages>99-130</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(03)00157-X</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2004-03, Vol.119 (1), p.99-130
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_37877064
source RePEc; Elsevier ScienceDirect Journals
subjects Applications
Asymptotic normality
Cross-validation
Discrete variables
Dynamic models
Econometrics
Estimating techniques
Estimation
Exact sciences and technology
Factor analysis
Insurance, economics, finance
Mathematics
Nonparametric smoothing
Probability and statistics
Regression analysis
Sciences and techniques of general use
Simulation
Statistics
Studies
title Nonparametric estimation of regression functions with both categorical and continuous data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20regression%20functions%20with%20both%20categorical%20and%20continuous%20data&rft.jtitle=Journal%20of%20econometrics&rft.au=Racine,%20Jeff&rft.date=2004-03-01&rft.volume=119&rft.issue=1&rft.spage=99&rft.epage=130&rft.pages=99-130&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(03)00157-X&rft_dat=%3Cproquest_cross%3E37877064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196660745&rft_id=info:pmid/&rft_els_id=S030440760300157X&rfr_iscdi=true