Nonparametric estimation of regression functions with both categorical and continuous data
In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2004-03, Vol.119 (1), p.99-130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | Journal of econometrics |
container_volume | 119 |
creator | Racine, Jeff Li, Qi |
description | In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set. |
doi_str_mv | 10.1016/S0304-4076(03)00157-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37877064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440760300157X</els_id><sourcerecordid>37877064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</originalsourceid><addsrcrecordid>eNqFkF1rFjEQhRdR8LX6E4RFUPRidbL52lyJFD8peqFC8SYk2Wyb8m6yTbKV_ntn-5YK3hiYCRnOGU6epnlK4DUBIt58BwqsYyDFS6CvAAiX3em9ZkcG2XdiUPx-s7uTPGwelXIBAJwNdNf8-priYrKZfc3Btb7UMJsaUmzT1GZ_ln0p22tao9vGpf0d6nlrEzZnqj9LaDP71sSxdSnWENe0lnY01TxuHkxmX_yT2_uo-fnh_Y_jT93Jt4-fj9-ddI5LUTs5WD4R6QzwfhgYwTb0jg_UWmaFEor01PTMEjsCUYJYpSg4RkdDLevNRI-aF4e9S06XK_5Az6E4v9-b6DGLpnKQEgRD4bN_hBdpzRGzaVwsBEjGUcQPIpdTKdlPesmIJF9rAnrDrW9w642lBqpvcOtT9H05-LJfvLszeTzIJc36SlNDiMJ-jdUD7qAmbEOsBUspTSjo8zrjsue3SU1BulM20YXyNwnnwASRqHt70HnkexV81sUFH50fQ_au6jGF_8T-Az5drVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196660745</pqid></control><display><type>article</type><title>Nonparametric estimation of regression functions with both categorical and continuous data</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Racine, Jeff ; Li, Qi</creator><creatorcontrib>Racine, Jeff ; Li, Qi</creatorcontrib><description>In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(03)00157-X</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Asymptotic normality ; Cross-validation ; Discrete variables ; Dynamic models ; Econometrics ; Estimating techniques ; Estimation ; Exact sciences and technology ; Factor analysis ; Insurance, economics, finance ; Mathematics ; Nonparametric smoothing ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Simulation ; Statistics ; Studies</subject><ispartof>Journal of econometrics, 2004-03, Vol.119 (1), p.99-130</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</citedby><cites>FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030440760300157X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15504617$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a119_3ay_3a2004_3ai_3a1_3ap_3a99-130.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Racine, Jeff</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><title>Nonparametric estimation of regression functions with both categorical and continuous data</title><title>Journal of econometrics</title><description>In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.</description><subject>Applications</subject><subject>Asymptotic normality</subject><subject>Cross-validation</subject><subject>Discrete variables</subject><subject>Dynamic models</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Factor analysis</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Nonparametric smoothing</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkF1rFjEQhRdR8LX6E4RFUPRidbL52lyJFD8peqFC8SYk2Wyb8m6yTbKV_ntn-5YK3hiYCRnOGU6epnlK4DUBIt58BwqsYyDFS6CvAAiX3em9ZkcG2XdiUPx-s7uTPGwelXIBAJwNdNf8-priYrKZfc3Btb7UMJsaUmzT1GZ_ln0p22tao9vGpf0d6nlrEzZnqj9LaDP71sSxdSnWENe0lnY01TxuHkxmX_yT2_uo-fnh_Y_jT93Jt4-fj9-ddI5LUTs5WD4R6QzwfhgYwTb0jg_UWmaFEor01PTMEjsCUYJYpSg4RkdDLevNRI-aF4e9S06XK_5Az6E4v9-b6DGLpnKQEgRD4bN_hBdpzRGzaVwsBEjGUcQPIpdTKdlPesmIJF9rAnrDrW9w642lBqpvcOtT9H05-LJfvLszeTzIJc36SlNDiMJ-jdUD7qAmbEOsBUspTSjo8zrjsue3SU1BulM20YXyNwnnwASRqHt70HnkexV81sUFH50fQ_au6jGF_8T-Az5drVI</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Racine, Jeff</creator><creator>Li, Qi</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20040301</creationdate><title>Nonparametric estimation of regression functions with both categorical and continuous data</title><author>Racine, Jeff ; Li, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-78b5f17ca052884128882c583bb4b6969123a24b1bd01961b9930c43da3b42af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Asymptotic normality</topic><topic>Cross-validation</topic><topic>Discrete variables</topic><topic>Dynamic models</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Factor analysis</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Nonparametric smoothing</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Racine, Jeff</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Racine, Jeff</au><au>Li, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of regression functions with both categorical and continuous data</atitle><jtitle>Journal of econometrics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>119</volume><issue>1</issue><spage>99</spage><epage>130</epage><pages>99-130</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>In this paper we propose a method for nonparametric regression which admits continuous and categorical data in a natural manner using the method of kernels. A data-driven method of bandwidth selection is proposed, and we establish the asymptotic normality of the estimator. We also establish the rate of convergence of the cross-validated smoothing parameters to their benchmark optimal smoothing parameters. Simulations suggest that the new estimator performs much better than the conventional nonparametric estimator in the presence of mixed data. An empirical application to a widely used and publicly available dynamic panel of patent data demonstrates that the out-of-sample squared prediction error of our proposed estimator is only 14–20% of that obtained by some popular parametric approaches which have been used to model this data set.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(03)00157-X</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2004-03, Vol.119 (1), p.99-130 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_37877064 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Applications Asymptotic normality Cross-validation Discrete variables Dynamic models Econometrics Estimating techniques Estimation Exact sciences and technology Factor analysis Insurance, economics, finance Mathematics Nonparametric smoothing Probability and statistics Regression analysis Sciences and techniques of general use Simulation Statistics Studies |
title | Nonparametric estimation of regression functions with both categorical and continuous data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20regression%20functions%20with%20both%20categorical%20and%20continuous%20data&rft.jtitle=Journal%20of%20econometrics&rft.au=Racine,%20Jeff&rft.date=2004-03-01&rft.volume=119&rft.issue=1&rft.spage=99&rft.epage=130&rft.pages=99-130&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(03)00157-X&rft_dat=%3Cproquest_cross%3E37877064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196660745&rft_id=info:pmid/&rft_els_id=S030440760300157X&rfr_iscdi=true |