Designing a Better Shopbot
A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result...
Gespeichert in:
Veröffentlicht in: | Management science 2004-02, Vol.50 (2), p.189-206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | Management science |
container_volume | 50 |
creator | Montgomery, Alan L Hosanagar, Kartik Krishnan, Ramayya Clay, Karen B |
description | A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers. |
doi_str_mv | 10.1287/mnsc.1030.0151 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37869466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A114287127</galeid><jstor_id>30046058</jstor_id><sourcerecordid>A114287127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</originalsourceid><addsrcrecordid>eNqFkc-r1DAQx4MouK5ePQjC4kFPXWeSJmmP7z1_88CDeg7ZdNrN0jY16Srvvze18gQRJUwmhM93-M4MY48R9sgr_XIYk9sjCNgDSrzDNii5KqQEvMs2AFwWWEN9nz1I6QQAutJqw568ouS70Y_dzu4uaZ4p7j4dw3QI80N2r7V9oke_8pZ9efP689W74vrj2_dXF9eFU1zOBSeppNMH0dRcC2yQQFPVtk5rrFFhU0mtneCVKhtryxJrhYIaOBxqXduGxJY9X-tOMXw9U5rN4JOjvrcjhXMyQleqLpXK4LM_wFM4xzF7MxwFl0rAAhUr1NmejB_bMEfrOhop2j6M1Pr8fYFY5pFhNrxl-7_w-TQ0ePcvgYshpUitmaIfbLwxCGZZhFkWYZZFmGURWfBhFUSayN3SfhxC_Il-M8JKyNdNDg5Q5uSXZ44pB1a14aDMcR5ysadrsVOaQ7wtJrJKgax-t790Eof0f3MvVv7ou-N3H9cRLMLBZtKbbIyb7ED8APY4t0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213256306</pqid></control><display><type>article</type><title>Designing a Better Shopbot</title><source>Jstor Complete Legacy</source><source>Informs</source><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Montgomery, Alan L ; Hosanagar, Kartik ; Krishnan, Ramayya ; Clay, Karen B</creator><creatorcontrib>Montgomery, Alan L ; Hosanagar, Kartik ; Krishnan, Ramayya ; Clay, Karen B</creatorcontrib><description>A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.1030.0151</identifier><identifier>CODEN: MNSCDI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Access to information ; Bestselling books ; Bookstores ; Business management ; Business studies ; Consumer behavior ; Consumer behaviour ; Consumer psychology ; Economics ; Information retrieval ; Intelligent agents ; Management science ; Marketing ; Online searching ; Price changes ; Retail trade ; Robots ; Shopping ; stochastic modeling ; Stochastic models ; Studies ; Technology ; Utility models ; Utility theory</subject><ispartof>Management science, 2004-02, Vol.50 (2), p.189-206</ispartof><rights>Copyright 2004 INFORMS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Feb 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</citedby><cites>FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30046058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.1030.0151$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,3994,27901,27902,57992,58225,62589</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a50_3ay_3a2004_3ai_3a2_3ap_3a189-206.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Hosanagar, Kartik</creatorcontrib><creatorcontrib>Krishnan, Ramayya</creatorcontrib><creatorcontrib>Clay, Karen B</creatorcontrib><title>Designing a Better Shopbot</title><title>Management science</title><description>A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.</description><subject>Access to information</subject><subject>Bestselling books</subject><subject>Bookstores</subject><subject>Business management</subject><subject>Business studies</subject><subject>Consumer behavior</subject><subject>Consumer behaviour</subject><subject>Consumer psychology</subject><subject>Economics</subject><subject>Information retrieval</subject><subject>Intelligent agents</subject><subject>Management science</subject><subject>Marketing</subject><subject>Online searching</subject><subject>Price changes</subject><subject>Retail trade</subject><subject>Robots</subject><subject>Shopping</subject><subject>stochastic modeling</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Technology</subject><subject>Utility models</subject><subject>Utility theory</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc-r1DAQx4MouK5ePQjC4kFPXWeSJmmP7z1_88CDeg7ZdNrN0jY16Srvvze18gQRJUwmhM93-M4MY48R9sgr_XIYk9sjCNgDSrzDNii5KqQEvMs2AFwWWEN9nz1I6QQAutJqw568ouS70Y_dzu4uaZ4p7j4dw3QI80N2r7V9oke_8pZ9efP689W74vrj2_dXF9eFU1zOBSeppNMH0dRcC2yQQFPVtk5rrFFhU0mtneCVKhtryxJrhYIaOBxqXduGxJY9X-tOMXw9U5rN4JOjvrcjhXMyQleqLpXK4LM_wFM4xzF7MxwFl0rAAhUr1NmejB_bMEfrOhop2j6M1Pr8fYFY5pFhNrxl-7_w-TQ0ePcvgYshpUitmaIfbLwxCGZZhFkWYZZFmGURWfBhFUSayN3SfhxC_Il-M8JKyNdNDg5Q5uSXZ44pB1a14aDMcR5ysadrsVOaQ7wtJrJKgax-t790Eof0f3MvVv7ou-N3H9cRLMLBZtKbbIyb7ED8APY4t0o</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Montgomery, Alan L</creator><creator>Hosanagar, Kartik</creator><creator>Krishnan, Ramayya</creator><creator>Clay, Karen B</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20040201</creationdate><title>Designing a Better Shopbot</title><author>Montgomery, Alan L ; Hosanagar, Kartik ; Krishnan, Ramayya ; Clay, Karen B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Access to information</topic><topic>Bestselling books</topic><topic>Bookstores</topic><topic>Business management</topic><topic>Business studies</topic><topic>Consumer behavior</topic><topic>Consumer behaviour</topic><topic>Consumer psychology</topic><topic>Economics</topic><topic>Information retrieval</topic><topic>Intelligent agents</topic><topic>Management science</topic><topic>Marketing</topic><topic>Online searching</topic><topic>Price changes</topic><topic>Retail trade</topic><topic>Robots</topic><topic>Shopping</topic><topic>stochastic modeling</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Technology</topic><topic>Utility models</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Hosanagar, Kartik</creatorcontrib><creatorcontrib>Krishnan, Ramayya</creatorcontrib><creatorcontrib>Clay, Karen B</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Alan L</au><au>Hosanagar, Kartik</au><au>Krishnan, Ramayya</au><au>Clay, Karen B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing a Better Shopbot</atitle><jtitle>Management science</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>189</spage><epage>206</epage><pages>189-206</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MNSCDI</coden><abstract>A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.1030.0151</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-1909 |
ispartof | Management science, 2004-02, Vol.50 (2), p.189-206 |
issn | 0025-1909 1526-5501 |
language | eng |
recordid | cdi_proquest_miscellaneous_37869466 |
source | Jstor Complete Legacy; Informs; RePEc; EBSCOhost Business Source Complete |
subjects | Access to information Bestselling books Bookstores Business management Business studies Consumer behavior Consumer behaviour Consumer psychology Economics Information retrieval Intelligent agents Management science Marketing Online searching Price changes Retail trade Robots Shopping stochastic modeling Stochastic models Studies Technology Utility models Utility theory |
title | Designing a Better Shopbot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20a%20Better%20Shopbot&rft.jtitle=Management%20science&rft.au=Montgomery,%20Alan%20L&rft.date=2004-02-01&rft.volume=50&rft.issue=2&rft.spage=189&rft.epage=206&rft.pages=189-206&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MNSCDI&rft_id=info:doi/10.1287/mnsc.1030.0151&rft_dat=%3Cgale_proqu%3EA114287127%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213256306&rft_id=info:pmid/&rft_galeid=A114287127&rft_jstor_id=30046058&rfr_iscdi=true |