Designing a Better Shopbot

A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science 2004-02, Vol.50 (2), p.189-206
Hauptverfasser: Montgomery, Alan L, Hosanagar, Kartik, Krishnan, Ramayya, Clay, Karen B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 189
container_title Management science
container_volume 50
creator Montgomery, Alan L
Hosanagar, Kartik
Krishnan, Ramayya
Clay, Karen B
description A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.
doi_str_mv 10.1287/mnsc.1030.0151
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37869466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A114287127</galeid><jstor_id>30046058</jstor_id><sourcerecordid>A114287127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</originalsourceid><addsrcrecordid>eNqFkc-r1DAQx4MouK5ePQjC4kFPXWeSJmmP7z1_88CDeg7ZdNrN0jY16Srvvze18gQRJUwmhM93-M4MY48R9sgr_XIYk9sjCNgDSrzDNii5KqQEvMs2AFwWWEN9nz1I6QQAutJqw568ouS70Y_dzu4uaZ4p7j4dw3QI80N2r7V9oke_8pZ9efP689W74vrj2_dXF9eFU1zOBSeppNMH0dRcC2yQQFPVtk5rrFFhU0mtneCVKhtryxJrhYIaOBxqXduGxJY9X-tOMXw9U5rN4JOjvrcjhXMyQleqLpXK4LM_wFM4xzF7MxwFl0rAAhUr1NmejB_bMEfrOhop2j6M1Pr8fYFY5pFhNrxl-7_w-TQ0ePcvgYshpUitmaIfbLwxCGZZhFkWYZZFmGURWfBhFUSayN3SfhxC_Il-M8JKyNdNDg5Q5uSXZ44pB1a14aDMcR5ysadrsVOaQ7wtJrJKgax-t790Eof0f3MvVv7ou-N3H9cRLMLBZtKbbIyb7ED8APY4t0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213256306</pqid></control><display><type>article</type><title>Designing a Better Shopbot</title><source>Jstor Complete Legacy</source><source>Informs</source><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Montgomery, Alan L ; Hosanagar, Kartik ; Krishnan, Ramayya ; Clay, Karen B</creator><creatorcontrib>Montgomery, Alan L ; Hosanagar, Kartik ; Krishnan, Ramayya ; Clay, Karen B</creatorcontrib><description>A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.1030.0151</identifier><identifier>CODEN: MNSCDI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Access to information ; Bestselling books ; Bookstores ; Business management ; Business studies ; Consumer behavior ; Consumer behaviour ; Consumer psychology ; Economics ; Information retrieval ; Intelligent agents ; Management science ; Marketing ; Online searching ; Price changes ; Retail trade ; Robots ; Shopping ; stochastic modeling ; Stochastic models ; Studies ; Technology ; Utility models ; Utility theory</subject><ispartof>Management science, 2004-02, Vol.50 (2), p.189-206</ispartof><rights>Copyright 2004 INFORMS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Feb 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</citedby><cites>FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30046058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.1030.0151$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,3994,27901,27902,57992,58225,62589</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a50_3ay_3a2004_3ai_3a2_3ap_3a189-206.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Hosanagar, Kartik</creatorcontrib><creatorcontrib>Krishnan, Ramayya</creatorcontrib><creatorcontrib>Clay, Karen B</creatorcontrib><title>Designing a Better Shopbot</title><title>Management science</title><description>A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.</description><subject>Access to information</subject><subject>Bestselling books</subject><subject>Bookstores</subject><subject>Business management</subject><subject>Business studies</subject><subject>Consumer behavior</subject><subject>Consumer behaviour</subject><subject>Consumer psychology</subject><subject>Economics</subject><subject>Information retrieval</subject><subject>Intelligent agents</subject><subject>Management science</subject><subject>Marketing</subject><subject>Online searching</subject><subject>Price changes</subject><subject>Retail trade</subject><subject>Robots</subject><subject>Shopping</subject><subject>stochastic modeling</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Technology</subject><subject>Utility models</subject><subject>Utility theory</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc-r1DAQx4MouK5ePQjC4kFPXWeSJmmP7z1_88CDeg7ZdNrN0jY16Srvvze18gQRJUwmhM93-M4MY48R9sgr_XIYk9sjCNgDSrzDNii5KqQEvMs2AFwWWEN9nz1I6QQAutJqw568ouS70Y_dzu4uaZ4p7j4dw3QI80N2r7V9oke_8pZ9efP689W74vrj2_dXF9eFU1zOBSeppNMH0dRcC2yQQFPVtk5rrFFhU0mtneCVKhtryxJrhYIaOBxqXduGxJY9X-tOMXw9U5rN4JOjvrcjhXMyQleqLpXK4LM_wFM4xzF7MxwFl0rAAhUr1NmejB_bMEfrOhop2j6M1Pr8fYFY5pFhNrxl-7_w-TQ0ePcvgYshpUitmaIfbLwxCGZZhFkWYZZFmGURWfBhFUSayN3SfhxC_Il-M8JKyNdNDg5Q5uSXZ44pB1a14aDMcR5ysadrsVOaQ7wtJrJKgax-t790Eof0f3MvVv7ou-N3H9cRLMLBZtKbbIyb7ED8APY4t0o</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Montgomery, Alan L</creator><creator>Hosanagar, Kartik</creator><creator>Krishnan, Ramayya</creator><creator>Clay, Karen B</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>8A3</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M2M</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20040201</creationdate><title>Designing a Better Shopbot</title><author>Montgomery, Alan L ; Hosanagar, Kartik ; Krishnan, Ramayya ; Clay, Karen B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625t-2e565c7b3d92731d1e07e8ffc7719161d8577c32864daa4419613ed0bb979ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Access to information</topic><topic>Bestselling books</topic><topic>Bookstores</topic><topic>Business management</topic><topic>Business studies</topic><topic>Consumer behavior</topic><topic>Consumer behaviour</topic><topic>Consumer psychology</topic><topic>Economics</topic><topic>Information retrieval</topic><topic>Intelligent agents</topic><topic>Management science</topic><topic>Marketing</topic><topic>Online searching</topic><topic>Price changes</topic><topic>Retail trade</topic><topic>Robots</topic><topic>Shopping</topic><topic>stochastic modeling</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Technology</topic><topic>Utility models</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Alan L</creatorcontrib><creatorcontrib>Hosanagar, Kartik</creatorcontrib><creatorcontrib>Krishnan, Ramayya</creatorcontrib><creatorcontrib>Clay, Karen B</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Entrepreneurship Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Alan L</au><au>Hosanagar, Kartik</au><au>Krishnan, Ramayya</au><au>Clay, Karen B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing a Better Shopbot</atitle><jtitle>Management science</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>189</spage><epage>206</epage><pages>189-206</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MNSCDI</coden><abstract>A primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping robot. These shopbots automatically search a large number of vendors for price and availability. Typically a shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs can be improved by developing a utility model of consumer purchasing behavior. This utility model considers the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model to price and response time data collected at online bookstores over a six-month period. Using prior expectations about price and response time, we show how shopbots can substantially increase consumer utility by searching more intelligently and then selectively presenting offers.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.1030.0151</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 2004-02, Vol.50 (2), p.189-206
issn 0025-1909
1526-5501
language eng
recordid cdi_proquest_miscellaneous_37869466
source Jstor Complete Legacy; Informs; RePEc; EBSCOhost Business Source Complete
subjects Access to information
Bestselling books
Bookstores
Business management
Business studies
Consumer behavior
Consumer behaviour
Consumer psychology
Economics
Information retrieval
Intelligent agents
Management science
Marketing
Online searching
Price changes
Retail trade
Robots
Shopping
stochastic modeling
Stochastic models
Studies
Technology
Utility models
Utility theory
title Designing a Better Shopbot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20a%20Better%20Shopbot&rft.jtitle=Management%20science&rft.au=Montgomery,%20Alan%20L&rft.date=2004-02-01&rft.volume=50&rft.issue=2&rft.spage=189&rft.epage=206&rft.pages=189-206&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MNSCDI&rft_id=info:doi/10.1287/mnsc.1030.0151&rft_dat=%3Cgale_proqu%3EA114287127%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213256306&rft_id=info:pmid/&rft_galeid=A114287127&rft_jstor_id=30046058&rfr_iscdi=true