Non-Gaussian Filter and Smoother Based on the Pearson Distribution System

The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2003-11, Vol.24 (6), p.721-738
1. Verfasser: Nagahara, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 6
container_start_page 721
container_title Journal of time series analysis
container_volume 24
creator Nagahara, Yuichi
description The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm which uses less‐memory and performs at a higher speed than other typical methods: using analytic approximation of successive conditional probability density functions for prediction and filtering by the Pearson distribution system in the case of both the system and observation noise being one‐dimensional. By using the approximated probability density function and the numerical integration, we obtain mean, variance, skewness and kurtosis of the next distribution. We decide the next approximated distribution from the Pearson distribution system. We adopt these steps for the prediction, filtering and smoothing recursively. Our framework makes it possible to construct time series models with various noise distributions. We apply our non‐Gaussian filter to the estimation of non‐Gaussian stochastic volatility models of the stock returns. We compare our method with the typical method.
doi_str_mv 10.1111/j.1467-9892.2003.00331.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37823770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37823770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4471-212a020cc8b50e686b7a4dc321fa7fa1c2a55eabf1db80eff522617ec50997243</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EEkvhP-TELcEfSewcOJQtXVqqBWmLkLiMJt6J6iUfi50tu_--ToP2jKXXMyPPM7ZfxhLBMxHXh10m8lKnlalkJjlXWZQS2fEFW5wPXrIFF7lKK23ka_YmhB3nosy1WLCb9dCnKzyE4LBPrl07kk-w3yabbhjGh1h8wkDbZOiTWCXfCX2I-ZULo3f1YXSx2JzCSN1b9qrBNtC7f_GC_bj-fL_8kt59W90sL-9Sm8cbUykkcsmtNXXBqTRlrTHfWiVFg7pBYSUWBWHdiG1tODVNIWUpNNmCV5WWubpg7-e5ez_8OVAYoXPBUttiT8MhgIqfVFrz2GjmRuuHEDw1sPeuQ38CwWHyDnYwWQSTRTB5B8_ewTGitzPqaU_2zNUt7sZAHuERFMo8bqcpmVCFLqqM2kdpKUArAw9jF4d9nIf9dS2d_vsRcHu_uYxZ5NOZj57T8cyj_w2lVrqAn-sVrL-aX8v1lQGlngD3n51C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37823770</pqid></control><display><type>article</type><title>Non-Gaussian Filter and Smoother Based on the Pearson Distribution System</title><source>RePEc</source><source>Wiley Online Library All Journals</source><creator>Nagahara, Yuichi</creator><creatorcontrib>Nagahara, Yuichi</creatorcontrib><description>The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm which uses less‐memory and performs at a higher speed than other typical methods: using analytic approximation of successive conditional probability density functions for prediction and filtering by the Pearson distribution system in the case of both the system and observation noise being one‐dimensional. By using the approximated probability density function and the numerical integration, we obtain mean, variance, skewness and kurtosis of the next distribution. We decide the next approximated distribution from the Pearson distribution system. We adopt these steps for the prediction, filtering and smoothing recursively. Our framework makes it possible to construct time series models with various noise distributions. We apply our non‐Gaussian filter to the estimation of non‐Gaussian stochastic volatility models of the stock returns. We compare our method with the typical method.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/j.1467-9892.2003.00331.x</identifier><language>eng</language><publisher>Oxford UK: Blackwell Publishing Ltd</publisher><subject>Distribution ; Econometrics ; General state space model ; Mathematical analysis ; non-Gaussian filter ; Pearson distribution system ; Statistical methods ; stochastic volatility model ; Time series</subject><ispartof>Journal of time series analysis, 2003-11, Vol.24 (6), p.721-738</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4471-212a020cc8b50e686b7a4dc321fa7fa1c2a55eabf1db80eff522617ec50997243</citedby><cites>FETCH-LOGICAL-c4471-212a020cc8b50e686b7a4dc321fa7fa1c2a55eabf1db80eff522617ec50997243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9892.2003.00331.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9892.2003.00331.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4007,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajtsera/v_3a24_3ay_3a2003_3ai_3a6_3ap_3a721-738.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagahara, Yuichi</creatorcontrib><title>Non-Gaussian Filter and Smoother Based on the Pearson Distribution System</title><title>Journal of time series analysis</title><description>The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm which uses less‐memory and performs at a higher speed than other typical methods: using analytic approximation of successive conditional probability density functions for prediction and filtering by the Pearson distribution system in the case of both the system and observation noise being one‐dimensional. By using the approximated probability density function and the numerical integration, we obtain mean, variance, skewness and kurtosis of the next distribution. We decide the next approximated distribution from the Pearson distribution system. We adopt these steps for the prediction, filtering and smoothing recursively. Our framework makes it possible to construct time series models with various noise distributions. We apply our non‐Gaussian filter to the estimation of non‐Gaussian stochastic volatility models of the stock returns. We compare our method with the typical method.</description><subject>Distribution</subject><subject>Econometrics</subject><subject>General state space model</subject><subject>Mathematical analysis</subject><subject>non-Gaussian filter</subject><subject>Pearson distribution system</subject><subject>Statistical methods</subject><subject>stochastic volatility model</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkE1v1DAQhi0EEkvhP-TELcEfSewcOJQtXVqqBWmLkLiMJt6J6iUfi50tu_--ToP2jKXXMyPPM7ZfxhLBMxHXh10m8lKnlalkJjlXWZQS2fEFW5wPXrIFF7lKK23ka_YmhB3nosy1WLCb9dCnKzyE4LBPrl07kk-w3yabbhjGh1h8wkDbZOiTWCXfCX2I-ZULo3f1YXSx2JzCSN1b9qrBNtC7f_GC_bj-fL_8kt59W90sL-9Sm8cbUykkcsmtNXXBqTRlrTHfWiVFg7pBYSUWBWHdiG1tODVNIWUpNNmCV5WWubpg7-e5ez_8OVAYoXPBUttiT8MhgIqfVFrz2GjmRuuHEDw1sPeuQ38CwWHyDnYwWQSTRTB5B8_ewTGitzPqaU_2zNUt7sZAHuERFMo8bqcpmVCFLqqM2kdpKUArAw9jF4d9nIf9dS2d_vsRcHu_uYxZ5NOZj57T8cyj_w2lVrqAn-sVrL-aX8v1lQGlngD3n51C</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Nagahara, Yuichi</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200311</creationdate><title>Non-Gaussian Filter and Smoother Based on the Pearson Distribution System</title><author>Nagahara, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4471-212a020cc8b50e686b7a4dc321fa7fa1c2a55eabf1db80eff522617ec50997243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Distribution</topic><topic>Econometrics</topic><topic>General state space model</topic><topic>Mathematical analysis</topic><topic>non-Gaussian filter</topic><topic>Pearson distribution system</topic><topic>Statistical methods</topic><topic>stochastic volatility model</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagahara, Yuichi</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagahara, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Gaussian Filter and Smoother Based on the Pearson Distribution System</atitle><jtitle>Journal of time series analysis</jtitle><date>2003-11</date><risdate>2003</risdate><volume>24</volume><issue>6</issue><spage>721</spage><epage>738</epage><pages>721-738</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm which uses less‐memory and performs at a higher speed than other typical methods: using analytic approximation of successive conditional probability density functions for prediction and filtering by the Pearson distribution system in the case of both the system and observation noise being one‐dimensional. By using the approximated probability density function and the numerical integration, we obtain mean, variance, skewness and kurtosis of the next distribution. We decide the next approximated distribution from the Pearson distribution system. We adopt these steps for the prediction, filtering and smoothing recursively. Our framework makes it possible to construct time series models with various noise distributions. We apply our non‐Gaussian filter to the estimation of non‐Gaussian stochastic volatility models of the stock returns. We compare our method with the typical method.</abstract><cop>Oxford UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9892.2003.00331.x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2003-11, Vol.24 (6), p.721-738
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_miscellaneous_37823770
source RePEc; Wiley Online Library All Journals
subjects Distribution
Econometrics
General state space model
Mathematical analysis
non-Gaussian filter
Pearson distribution system
Statistical methods
stochastic volatility model
Time series
title Non-Gaussian Filter and Smoother Based on the Pearson Distribution System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Gaussian%20Filter%20and%20Smoother%20Based%20on%20the%20Pearson%20Distribution%20System&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Nagahara,%20Yuichi&rft.date=2003-11&rft.volume=24&rft.issue=6&rft.spage=721&rft.epage=738&rft.pages=721-738&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/j.1467-9892.2003.00331.x&rft_dat=%3Cproquest_cross%3E37823770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37823770&rft_id=info:pmid/&rfr_iscdi=true