Aggregation of space-time processes

In this paper we compare the relative efficiency of different methods of forecasting the aggregate of spatially correlated variables. Small sample simulations confirm the asymptotic result that improved forecasting performance can be obtained by imposing a priori constraints on the amount of spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2004, Vol.118 (1), p.7-26
Hauptverfasser: Giacomini, Raffaella, Granger, Clive W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 7
container_title Journal of econometrics
container_volume 118
creator Giacomini, Raffaella
Granger, Clive W.J.
description In this paper we compare the relative efficiency of different methods of forecasting the aggregate of spatially correlated variables. Small sample simulations confirm the asymptotic result that improved forecasting performance can be obtained by imposing a priori constraints on the amount of spatial correlation in the system. One way to do so is to aggregate forecasts from a space-time autoregressive model (Elements of Spatial Structure, Cambridge University Press, Cambridge, 1975), which offers a solution to the ‘curse of dimensionality’ that arises when forecasting with VARs. We also show that ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts. Finally, if the system satisfies a ‘poolability’ condition, there is a benefit in forecasting the aggregate variable directly.
doi_str_mv 10.1016/S0304-4076(03)00132-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37823720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407603001325</els_id><sourcerecordid>37823720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-62ad433d75e7b9f1111264de57a8a23981df236271b7fbe0e2e49b3ef0af63683</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVIIds0PyGwtFCag5ORxpbsU1lCkzYs5NDkPGjl8VZhbbmSN5B_X-1uySGXDMwIxHtvhk-IcwmXEqS--g0IZVGC0d8ALwAkqqI6EjNZG1XouqmOxexVciI-pvQEAFVZ40x8WazXkdd28mGYh26eRuu4mHzP8zEGxylx-iQ-dHaT-Oz_eyoeb348XP8slve3v64Xy8JVDU6FVrYtEVtTsVk1ncyldNlyZWxtFTa1bDuFWhm5Mt2KgRWXzQq5A9tp1DWeiq-H3Lz575bTRL1PjjcbO3DYJkJTKzQKsvDzG-FT2MYh30ay0Vobo0wWVQeRiyGlyB2N0fc2vpAE2nGjPTfaQSFA2nOjKvvuDr7II7tXE-dyYQg9PRNaKes8X3IryBlo_e6TVJ5jbkNK05-pz2HfD2GcuT17jpSc58Fx6yO7idrg3znnH1Bmi20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196667727</pqid></control><display><type>article</type><title>Aggregation of space-time processes</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Giacomini, Raffaella ; Granger, Clive W.J.</creator><creatorcontrib>Giacomini, Raffaella ; Granger, Clive W.J.</creatorcontrib><description>In this paper we compare the relative efficiency of different methods of forecasting the aggregate of spatially correlated variables. Small sample simulations confirm the asymptotic result that improved forecasting performance can be obtained by imposing a priori constraints on the amount of spatial correlation in the system. One way to do so is to aggregate forecasts from a space-time autoregressive model (Elements of Spatial Structure, Cambridge University Press, Cambridge, 1975), which offers a solution to the ‘curse of dimensionality’ that arises when forecasting with VARs. We also show that ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts. Finally, if the system satisfies a ‘poolability’ condition, there is a benefit in forecasting the aggregate variable directly.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(03)00132-5</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aggregation ; Correlation analysis ; Econometric models ; Econometrics ; Economic forecasting ; Economic methodology ; Economic models ; Forecast efficiency ; Mathematical economics ; Regression analysis ; Space ; Space-time models ; Spacetime ; Spatial correlation ; Studies ; Time ; Time series ; VAR</subject><ispartof>Journal of econometrics, 2004, Vol.118 (1), p.7-26</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan/Feb 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-62ad433d75e7b9f1111264de57a8a23981df236271b7fbe0e2e49b3ef0af63683</citedby><cites>FETCH-LOGICAL-c593t-62ad433d75e7b9f1111264de57a8a23981df236271b7fbe0e2e49b3ef0af63683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-4076(03)00132-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,4012,4028,27932,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a118_3ay_3a2004_3ai_3a1-2_3ap_3a7-26.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacomini, Raffaella</creatorcontrib><creatorcontrib>Granger, Clive W.J.</creatorcontrib><title>Aggregation of space-time processes</title><title>Journal of econometrics</title><description>In this paper we compare the relative efficiency of different methods of forecasting the aggregate of spatially correlated variables. Small sample simulations confirm the asymptotic result that improved forecasting performance can be obtained by imposing a priori constraints on the amount of spatial correlation in the system. One way to do so is to aggregate forecasts from a space-time autoregressive model (Elements of Spatial Structure, Cambridge University Press, Cambridge, 1975), which offers a solution to the ‘curse of dimensionality’ that arises when forecasting with VARs. We also show that ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts. Finally, if the system satisfies a ‘poolability’ condition, there is a benefit in forecasting the aggregate variable directly.</description><subject>Aggregation</subject><subject>Correlation analysis</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic forecasting</subject><subject>Economic methodology</subject><subject>Economic models</subject><subject>Forecast efficiency</subject><subject>Mathematical economics</subject><subject>Regression analysis</subject><subject>Space</subject><subject>Space-time models</subject><subject>Spacetime</subject><subject>Spatial correlation</subject><subject>Studies</subject><subject>Time</subject><subject>Time series</subject><subject>VAR</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEFr3DAQhUVIIds0PyGwtFCag5ORxpbsU1lCkzYs5NDkPGjl8VZhbbmSN5B_X-1uySGXDMwIxHtvhk-IcwmXEqS--g0IZVGC0d8ALwAkqqI6EjNZG1XouqmOxexVciI-pvQEAFVZ40x8WazXkdd28mGYh26eRuu4mHzP8zEGxylx-iQ-dHaT-Oz_eyoeb348XP8slve3v64Xy8JVDU6FVrYtEVtTsVk1ncyldNlyZWxtFTa1bDuFWhm5Mt2KgRWXzQq5A9tp1DWeiq-H3Lz575bTRL1PjjcbO3DYJkJTKzQKsvDzG-FT2MYh30ay0Vobo0wWVQeRiyGlyB2N0fc2vpAE2nGjPTfaQSFA2nOjKvvuDr7II7tXE-dyYQg9PRNaKes8X3IryBlo_e6TVJ5jbkNK05-pz2HfD2GcuT17jpSc58Fx6yO7idrg3znnH1Bmi20</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Giacomini, Raffaella</creator><creator>Granger, Clive W.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2004</creationdate><title>Aggregation of space-time processes</title><author>Giacomini, Raffaella ; Granger, Clive W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-62ad433d75e7b9f1111264de57a8a23981df236271b7fbe0e2e49b3ef0af63683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aggregation</topic><topic>Correlation analysis</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic forecasting</topic><topic>Economic methodology</topic><topic>Economic models</topic><topic>Forecast efficiency</topic><topic>Mathematical economics</topic><topic>Regression analysis</topic><topic>Space</topic><topic>Space-time models</topic><topic>Spacetime</topic><topic>Spatial correlation</topic><topic>Studies</topic><topic>Time</topic><topic>Time series</topic><topic>VAR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacomini, Raffaella</creatorcontrib><creatorcontrib>Granger, Clive W.J.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacomini, Raffaella</au><au>Granger, Clive W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregation of space-time processes</atitle><jtitle>Journal of econometrics</jtitle><date>2004</date><risdate>2004</risdate><volume>118</volume><issue>1</issue><spage>7</spage><epage>26</epage><pages>7-26</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>In this paper we compare the relative efficiency of different methods of forecasting the aggregate of spatially correlated variables. Small sample simulations confirm the asymptotic result that improved forecasting performance can be obtained by imposing a priori constraints on the amount of spatial correlation in the system. One way to do so is to aggregate forecasts from a space-time autoregressive model (Elements of Spatial Structure, Cambridge University Press, Cambridge, 1975), which offers a solution to the ‘curse of dimensionality’ that arises when forecasting with VARs. We also show that ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts. Finally, if the system satisfies a ‘poolability’ condition, there is a benefit in forecasting the aggregate variable directly.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(03)00132-5</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2004, Vol.118 (1), p.7-26
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_37823720
source RePEc; Access via ScienceDirect (Elsevier)
subjects Aggregation
Correlation analysis
Econometric models
Econometrics
Economic forecasting
Economic methodology
Economic models
Forecast efficiency
Mathematical economics
Regression analysis
Space
Space-time models
Spacetime
Spatial correlation
Studies
Time
Time series
VAR
title Aggregation of space-time processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregation%20of%20space-time%20processes&rft.jtitle=Journal%20of%20econometrics&rft.au=Giacomini,%20Raffaella&rft.date=2004&rft.volume=118&rft.issue=1&rft.spage=7&rft.epage=26&rft.pages=7-26&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(03)00132-5&rft_dat=%3Cproquest_cross%3E37823720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196667727&rft_id=info:pmid/&rft_els_id=S0304407603001325&rfr_iscdi=true