Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions

We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2003-11, Vol.71 (6), p.1795-1843
Hauptverfasser: Ai, Chunrong, Chen, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1843
container_issue 6
container_start_page 1795
container_title Econometrica
container_volume 71
creator Ai, Chunrong
Chen, Xiaohong
description We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n-1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.
doi_str_mv 10.1111/1468-0262.00470
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37798208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1555539</jstor_id><sourcerecordid>1555539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4930-f4ea5e2c20d87ea082c0e726602bd11b105c7c4a4b756523e3d6116d90fda453</originalsourceid><addsrcrecordid>eNqFUE1P2zAYttAm0THOXDhEk8Yt5fVH7OSISvmQGJtQAWkXz3UccEltsFN1_fc4BAHaZa8sWXq-XvtBaA_DGKc5xIyXORBOxgBMwBYavSGf0AgAk7ziJdlGX2JcAECRzgj9mTaN1da4LpvGzi5VZ73LfJP98LVpY7a23X028a62PaHahC978ZWJXbC6B2PPd8o66-6ya_fg_NplJys3kF_R50a10ey-3jtodjKdTc7yi5-n55Oji1yzikLeMKMKQzSBuhRGQUk0GEE4BzKvMZ5jKLTQTLG5KHhBqKE1x5jXFTS1YgXdQQdD7GPwT6v0OLm0UZu2Vc74VZRUiKokUCbht3-EC78K6WdREqBlyVM1SXQ4iHTwMQbTyMeQugkbiUH2bcu-W9l3K1_aTo7vr7EqatU2QTlt47utIBUTvF_PBt3atmbzv1g5ncyOhvj9wbaInQ8fYtPQKtH5QNvYmb9vtAoPkgsqCnl7eSqPK_6b3wgsf9FnNvqmSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203886000</pqid></control><display><type>article</type><title>Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions</title><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ai, Chunrong ; Chen, Xiaohong</creator><creatorcontrib>Ai, Chunrong ; Chen, Xiaohong</creatorcontrib><description>We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n-1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/1468-0262.00470</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishing Ltd</publisher><subject>Codes ; Consistent estimators ; continuous updating ; Covariance ; Data analysis ; Econometric models ; Econometrics ; Economic models ; Economics ; endogeneity ; Estimating techniques ; Estimation methods ; Estimators ; Exact sciences and technology ; Fourier series ; Instrumental variables estimation ; Linear inference, regression ; Linear regression ; Mathematical models ; Mathematics ; Power series ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Semi-/nonparametric conditional moment restrictions ; semiparametric efficiency ; sieve minimum distance ; Statistics ; Studies ; Term weighting</subject><ispartof>Econometrica, 2003-11, Vol.71 (6), p.1795-1843</ispartof><rights>Copyright 2003 Econometric Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Econometric Society Nov 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4930-f4ea5e2c20d87ea082c0e726602bd11b105c7c4a4b756523e3d6116d90fda453</citedby><cites>FETCH-LOGICAL-c4930-f4ea5e2c20d87ea082c0e726602bd11b105c7c4a4b756523e3d6116d90fda453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1555539$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1555539$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15294768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ai, Chunrong</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><title>Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions</title><title>Econometrica</title><description>We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n-1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.</description><subject>Codes</subject><subject>Consistent estimators</subject><subject>continuous updating</subject><subject>Covariance</subject><subject>Data analysis</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economics</subject><subject>endogeneity</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Fourier series</subject><subject>Instrumental variables estimation</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Power series</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Semi-/nonparametric conditional moment restrictions</subject><subject>semiparametric efficiency</subject><subject>sieve minimum distance</subject><subject>Statistics</subject><subject>Studies</subject><subject>Term weighting</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUE1P2zAYttAm0THOXDhEk8Yt5fVH7OSISvmQGJtQAWkXz3UccEltsFN1_fc4BAHaZa8sWXq-XvtBaA_DGKc5xIyXORBOxgBMwBYavSGf0AgAk7ziJdlGX2JcAECRzgj9mTaN1da4LpvGzi5VZ73LfJP98LVpY7a23X028a62PaHahC978ZWJXbC6B2PPd8o66-6ya_fg_NplJys3kF_R50a10ey-3jtodjKdTc7yi5-n55Oji1yzikLeMKMKQzSBuhRGQUk0GEE4BzKvMZ5jKLTQTLG5KHhBqKE1x5jXFTS1YgXdQQdD7GPwT6v0OLm0UZu2Vc74VZRUiKokUCbht3-EC78K6WdREqBlyVM1SXQ4iHTwMQbTyMeQugkbiUH2bcu-W9l3K1_aTo7vr7EqatU2QTlt47utIBUTvF_PBt3atmbzv1g5ncyOhvj9wbaInQ8fYtPQKtH5QNvYmb9vtAoPkgsqCnl7eSqPK_6b3wgsf9FnNvqmSg</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Ai, Chunrong</creator><creator>Chen, Xiaohong</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200311</creationdate><title>Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions</title><author>Ai, Chunrong ; Chen, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4930-f4ea5e2c20d87ea082c0e726602bd11b105c7c4a4b756523e3d6116d90fda453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Codes</topic><topic>Consistent estimators</topic><topic>continuous updating</topic><topic>Covariance</topic><topic>Data analysis</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economics</topic><topic>endogeneity</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Fourier series</topic><topic>Instrumental variables estimation</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Power series</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Semi-/nonparametric conditional moment restrictions</topic><topic>semiparametric efficiency</topic><topic>sieve minimum distance</topic><topic>Statistics</topic><topic>Studies</topic><topic>Term weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Chunrong</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Chunrong</au><au>Chen, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions</atitle><jtitle>Econometrica</jtitle><date>2003-11</date><risdate>2003</risdate><volume>71</volume><issue>6</issue><spage>1795</spage><epage>1843</epage><pages>1795-1843</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n-1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1468-0262.00470</doi><tpages>49</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2003-11, Vol.71 (6), p.1795-1843
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_37798208
source JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Codes
Consistent estimators
continuous updating
Covariance
Data analysis
Econometric models
Econometrics
Economic models
Economics
endogeneity
Estimating techniques
Estimation methods
Estimators
Exact sciences and technology
Fourier series
Instrumental variables estimation
Linear inference, regression
Linear regression
Mathematical models
Mathematics
Power series
Probability and statistics
Regression analysis
Sciences and techniques of general use
Semi-/nonparametric conditional moment restrictions
semiparametric efficiency
sieve minimum distance
Statistics
Studies
Term weighting
title Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Estimation%20of%20Models%20with%20Conditional%20Moment%20Restrictions%20Containing%20Unknown%20Functions&rft.jtitle=Econometrica&rft.au=Ai,%20Chunrong&rft.date=2003-11&rft.volume=71&rft.issue=6&rft.spage=1795&rft.epage=1843&rft.pages=1795-1843&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/1468-0262.00470&rft_dat=%3Cjstor_proqu%3E1555539%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203886000&rft_id=info:pmid/&rft_jstor_id=1555539&rfr_iscdi=true