Advanced Distribution Theory for SiZer
SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also i...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2006-06, Vol.101 (474), p.484-499 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 474 |
container_start_page | 484 |
container_title | Journal of the American Statistical Association |
container_volume | 101 |
creator | Hannig, J Marron, J. S |
description | SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples. |
doi_str_mv | 10.1198/016214505000001294 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37751050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27590711</jstor_id><sourcerecordid>27590711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_QBCK4O6q-Wia9MKLMT9h4IUTxJuQNglmdM1MWmX_3pROBQXPTQ55n_NyzgvAMYLnCBX8AqIco4xCCvtCuMh2wAhRwlLMsuddMOqBNBLFPjgIYdlTjPMRmEzVu2wqrZIrG1pvy661rkkWr9r5TWKcTx7ti_aHYM_IOuij7TsGTzfXi9ldOn-4vZ9N52mVMdKmVEtaqRIZaajJKFNFTrRiJTeGYW2UUvEvL2lmICmZqVBsGGYcEag5wYyMwWTwXXv31unQipUNla5r2WjXBUEYoyheGcHTX-DSdb6Ju4l4cY4xJDxCeIAq70Lw2oi1tyvpNwJB0ecm_uYWh862zjJUsjY-xmPDzyTjNCMYR-5k4Jahdf5bx4wWkCEU9ctBt02McSU_nK-VaOWmdv7LlPyzxyclVoeH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274622038</pqid></control><display><type>article</type><title>Advanced Distribution Theory for SiZer</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Hannig, J ; Marron, J. S</creator><creatorcontrib>Hannig, J ; Marron, J. S</creatorcontrib><description>SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214505000001294</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Applications ; Approximation ; Curvature ; Data analysis ; Data smoothing ; Density estimation ; Distribution theory ; Exact sciences and technology ; Extreme value theory ; General topics ; Inference ; Kernel smoothing ; Mathematical models ; Mathematics ; Multiple testing adjustment ; Null hypothesis ; Pixels ; Probability and statistics ; Probability theory and stochastic processes ; Quantitative analysis ; Random variables ; Sample size ; Sciences and techniques of general use ; Simulation ; Simulation techniques ; SiZer ; Statistical analysis ; Statistical methods ; Statistics ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2006-06, Vol.101 (474), p.484-499</ispartof><rights>American Statistical Association 2006</rights><rights>Copyright 2006 American Statistical Association</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Statistical Association Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</citedby><cites>FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27590711$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27590711$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235,59626,60415</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17854322$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannig, J</creatorcontrib><creatorcontrib>Marron, J. S</creatorcontrib><title>Advanced Distribution Theory for SiZer</title><title>Journal of the American Statistical Association</title><description>SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.</description><subject>Applications</subject><subject>Approximation</subject><subject>Curvature</subject><subject>Data analysis</subject><subject>Data smoothing</subject><subject>Density estimation</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Extreme value theory</subject><subject>General topics</subject><subject>Inference</subject><subject>Kernel smoothing</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multiple testing adjustment</subject><subject>Null hypothesis</subject><subject>Pixels</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quantitative analysis</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Simulation techniques</subject><subject>SiZer</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_QBCK4O6q-Wia9MKLMT9h4IUTxJuQNglmdM1MWmX_3pROBQXPTQ55n_NyzgvAMYLnCBX8AqIco4xCCvtCuMh2wAhRwlLMsuddMOqBNBLFPjgIYdlTjPMRmEzVu2wqrZIrG1pvy661rkkWr9r5TWKcTx7ti_aHYM_IOuij7TsGTzfXi9ldOn-4vZ9N52mVMdKmVEtaqRIZaajJKFNFTrRiJTeGYW2UUvEvL2lmICmZqVBsGGYcEag5wYyMwWTwXXv31unQipUNla5r2WjXBUEYoyheGcHTX-DSdb6Ju4l4cY4xJDxCeIAq70Lw2oi1tyvpNwJB0ecm_uYWh862zjJUsjY-xmPDzyTjNCMYR-5k4Jahdf5bx4wWkCEU9ctBt02McSU_nK-VaOWmdv7LlPyzxyclVoeH</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Hannig, J</creator><creator>Marron, J. S</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20060601</creationdate><title>Advanced Distribution Theory for SiZer</title><author>Hannig, J ; Marron, J. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Curvature</topic><topic>Data analysis</topic><topic>Data smoothing</topic><topic>Density estimation</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Extreme value theory</topic><topic>General topics</topic><topic>Inference</topic><topic>Kernel smoothing</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multiple testing adjustment</topic><topic>Null hypothesis</topic><topic>Pixels</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quantitative analysis</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Simulation techniques</topic><topic>SiZer</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannig, J</creatorcontrib><creatorcontrib>Marron, J. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannig, J</au><au>Marron, J. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Distribution Theory for SiZer</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>101</volume><issue>474</issue><spage>484</spage><epage>499</epage><pages>484-499</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/016214505000001294</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2006-06, Vol.101 (474), p.484-499 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_miscellaneous_37751050 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis:Master (3349 titles) |
subjects | Applications Approximation Curvature Data analysis Data smoothing Density estimation Distribution theory Exact sciences and technology Extreme value theory General topics Inference Kernel smoothing Mathematical models Mathematics Multiple testing adjustment Null hypothesis Pixels Probability and statistics Probability theory and stochastic processes Quantitative analysis Random variables Sample size Sciences and techniques of general use Simulation Simulation techniques SiZer Statistical analysis Statistical methods Statistics Theory and Methods |
title | Advanced Distribution Theory for SiZer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Distribution%20Theory%20for%20SiZer&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Hannig,%20J&rft.date=2006-06-01&rft.volume=101&rft.issue=474&rft.spage=484&rft.epage=499&rft.pages=484-499&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214505000001294&rft_dat=%3Cjstor_proqu%3E27590711%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274622038&rft_id=info:pmid/&rft_jstor_id=27590711&rfr_iscdi=true |