Advanced Distribution Theory for SiZer

SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2006-06, Vol.101 (474), p.484-499
Hauptverfasser: Hannig, J, Marron, J. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 474
container_start_page 484
container_title Journal of the American Statistical Association
container_volume 101
creator Hannig, J
Marron, J. S
description SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.
doi_str_mv 10.1198/016214505000001294
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37751050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27590711</jstor_id><sourcerecordid>27590711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_QBCK4O6q-Wia9MKLMT9h4IUTxJuQNglmdM1MWmX_3pROBQXPTQ55n_NyzgvAMYLnCBX8AqIco4xCCvtCuMh2wAhRwlLMsuddMOqBNBLFPjgIYdlTjPMRmEzVu2wqrZIrG1pvy661rkkWr9r5TWKcTx7ti_aHYM_IOuij7TsGTzfXi9ldOn-4vZ9N52mVMdKmVEtaqRIZaajJKFNFTrRiJTeGYW2UUvEvL2lmICmZqVBsGGYcEag5wYyMwWTwXXv31unQipUNla5r2WjXBUEYoyheGcHTX-DSdb6Ju4l4cY4xJDxCeIAq70Lw2oi1tyvpNwJB0ecm_uYWh862zjJUsjY-xmPDzyTjNCMYR-5k4Jahdf5bx4wWkCEU9ctBt02McSU_nK-VaOWmdv7LlPyzxyclVoeH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274622038</pqid></control><display><type>article</type><title>Advanced Distribution Theory for SiZer</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Hannig, J ; Marron, J. S</creator><creatorcontrib>Hannig, J ; Marron, J. S</creatorcontrib><description>SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214505000001294</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Applications ; Approximation ; Curvature ; Data analysis ; Data smoothing ; Density estimation ; Distribution theory ; Exact sciences and technology ; Extreme value theory ; General topics ; Inference ; Kernel smoothing ; Mathematical models ; Mathematics ; Multiple testing adjustment ; Null hypothesis ; Pixels ; Probability and statistics ; Probability theory and stochastic processes ; Quantitative analysis ; Random variables ; Sample size ; Sciences and techniques of general use ; Simulation ; Simulation techniques ; SiZer ; Statistical analysis ; Statistical methods ; Statistics ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2006-06, Vol.101 (474), p.484-499</ispartof><rights>American Statistical Association 2006</rights><rights>Copyright 2006 American Statistical Association</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Statistical Association Jun 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</citedby><cites>FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27590711$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27590711$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235,59626,60415</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17854322$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannig, J</creatorcontrib><creatorcontrib>Marron, J. S</creatorcontrib><title>Advanced Distribution Theory for SiZer</title><title>Journal of the American Statistical Association</title><description>SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.</description><subject>Applications</subject><subject>Approximation</subject><subject>Curvature</subject><subject>Data analysis</subject><subject>Data smoothing</subject><subject>Density estimation</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Extreme value theory</subject><subject>General topics</subject><subject>Inference</subject><subject>Kernel smoothing</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multiple testing adjustment</subject><subject>Null hypothesis</subject><subject>Pixels</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quantitative analysis</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Simulation techniques</subject><subject>SiZer</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_QBCK4O6q-Wia9MKLMT9h4IUTxJuQNglmdM1MWmX_3pROBQXPTQ55n_NyzgvAMYLnCBX8AqIco4xCCvtCuMh2wAhRwlLMsuddMOqBNBLFPjgIYdlTjPMRmEzVu2wqrZIrG1pvy661rkkWr9r5TWKcTx7ti_aHYM_IOuij7TsGTzfXi9ldOn-4vZ9N52mVMdKmVEtaqRIZaajJKFNFTrRiJTeGYW2UUvEvL2lmICmZqVBsGGYcEag5wYyMwWTwXXv31unQipUNla5r2WjXBUEYoyheGcHTX-DSdb6Ju4l4cY4xJDxCeIAq70Lw2oi1tyvpNwJB0ecm_uYWh862zjJUsjY-xmPDzyTjNCMYR-5k4Jahdf5bx4wWkCEU9ctBt02McSU_nK-VaOWmdv7LlPyzxyclVoeH</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Hannig, J</creator><creator>Marron, J. S</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20060601</creationdate><title>Advanced Distribution Theory for SiZer</title><author>Hannig, J ; Marron, J. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-5ea5cdb1faf5f457d963ed7b8ff72efddd57d6b54f03b7fc14f07278130e83273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Curvature</topic><topic>Data analysis</topic><topic>Data smoothing</topic><topic>Density estimation</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Extreme value theory</topic><topic>General topics</topic><topic>Inference</topic><topic>Kernel smoothing</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multiple testing adjustment</topic><topic>Null hypothesis</topic><topic>Pixels</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quantitative analysis</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Simulation techniques</topic><topic>SiZer</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannig, J</creatorcontrib><creatorcontrib>Marron, J. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannig, J</au><au>Marron, J. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Distribution Theory for SiZer</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>101</volume><issue>474</issue><spage>484</spage><epage>499</epage><pages>484-499</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>SiZer is a powerful method for exploratory data analysis. In this article approximations to the distributions underlying the simultaneous statistical inference are investigated, and large improvements are made in the approximation using extreme value theory. This results in improved size, and also in an improved global inference version of SiZer. The main points are illustrated with real data and simulated examples.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/016214505000001294</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2006-06, Vol.101 (474), p.484-499
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_miscellaneous_37751050
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis:Master (3349 titles)
subjects Applications
Approximation
Curvature
Data analysis
Data smoothing
Density estimation
Distribution theory
Exact sciences and technology
Extreme value theory
General topics
Inference
Kernel smoothing
Mathematical models
Mathematics
Multiple testing adjustment
Null hypothesis
Pixels
Probability and statistics
Probability theory and stochastic processes
Quantitative analysis
Random variables
Sample size
Sciences and techniques of general use
Simulation
Simulation techniques
SiZer
Statistical analysis
Statistical methods
Statistics
Theory and Methods
title Advanced Distribution Theory for SiZer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Distribution%20Theory%20for%20SiZer&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Hannig,%20J&rft.date=2006-06-01&rft.volume=101&rft.issue=474&rft.spage=484&rft.epage=499&rft.pages=484-499&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214505000001294&rft_dat=%3Cjstor_proqu%3E27590711%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274622038&rft_id=info:pmid/&rft_jstor_id=27590711&rfr_iscdi=true