On properties of functional principal components analysis

Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2006-02, Vol.68 (1), p.109-126
Hauptverfasser: Hall, Peter, Hosseini-Nasab, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 1
container_start_page 109
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 68
creator Hall, Peter
Hosseini-Nasab, Mohammad
description Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.
doi_str_mv 10.1111/j.1467-9868.2005.00535.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37735752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3647559</jstor_id><sourcerecordid>3647559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCVKAv_gEOEBLcEJ47t5MABKuiHVq3ULXAcTRJHJGTj1JOF3X_PpKkWiVMtjcb2e2_0_OQgCBMRJ7w-dHGSaRMVuc7jVAgVc0kV758Fp0fgOe-lLiKTJemL4CVRJ3hpI0-D4mYIR-9G66fWUuiasNkN1dS6AXsG2qFqR95Vbju6wQ4ThcjIgVp6FZw02JN9_dhXwbevX-7OLqL1zfnl2ad1VCljVJSkyqS6LDKla4G1bWohK0RR2hRRpbKodca30paaMZvLUvG5Fk2ttSwR5Sp4v8xlm_c7SxNsW6ps3-Ng3Y5AGiOV4Umr4O1_xM7tPLsl4GByHpcLJuULqfKOyNsG-JFb9AdIBMyBQgdzbjDnNusUPAQKe5ZeLVJvR1sddWWPnfNEJfwGiSySeOBiqebWciVc49xFAUmq4ee05WHvHs0iVdg3Hjlp-mfGKJ3mUjHv48L70_b28GSzcLvZfFYP-jeLvqPJ-aNe6swoVTAcLXBLk90fYfS_gL-HUfDj-hzkevNd3eVXIORfzma7lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200866380</pqid></control><display><type>article</type><title>On properties of functional principal components analysis</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hall, Peter ; Hosseini-Nasab, Mohammad</creator><creatorcontrib>Hall, Peter ; Hosseini-Nasab, Mohammad</creatorcontrib><description>Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2005.00535.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Approximation ; Bootstrap method ; Confidence interval ; Covariance ; Cross-validation ; Data analysis ; Eigenfunction ; Eigenvalue ; Eigenvalues ; Error rates ; Estimators ; Exact sciences and technology ; Linear inference, regression ; Linear regression ; Mathematical analysis ; Mathematics ; Multivariate analysis ; Operator theory ; Principal component analysis ; Principal components analysis ; Probability and statistics ; Quantitative analysis ; Regression analysis ; Sample size ; Sciences and techniques of general use ; Simultaneous confidence region ; Statistical median ; Statistical methods ; Statistics ; Studies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2006-02, Vol.68 (1), p.109-126</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</citedby><cites>FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3647559$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3647559$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1416,4005,27922,27923,45572,45573,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17562835$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a68_3ay_3a2006_3ai_3a1_3ap_3a109-126.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Hosseini-Nasab, Mohammad</creatorcontrib><title>On properties of functional principal components analysis</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.</description><subject>Approximation</subject><subject>Bootstrap method</subject><subject>Confidence interval</subject><subject>Covariance</subject><subject>Cross-validation</subject><subject>Data analysis</subject><subject>Eigenfunction</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Error rates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Operator theory</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Probability and statistics</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simultaneous confidence region</subject><subject>Statistical median</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUk1v1DAQjRCVKAv_gEOEBLcEJ47t5MABKuiHVq3ULXAcTRJHJGTj1JOF3X_PpKkWiVMtjcb2e2_0_OQgCBMRJ7w-dHGSaRMVuc7jVAgVc0kV758Fp0fgOe-lLiKTJemL4CVRJ3hpI0-D4mYIR-9G66fWUuiasNkN1dS6AXsG2qFqR95Vbju6wQ4ThcjIgVp6FZw02JN9_dhXwbevX-7OLqL1zfnl2ad1VCljVJSkyqS6LDKla4G1bWohK0RR2hRRpbKodca30paaMZvLUvG5Fk2ttSwR5Sp4v8xlm_c7SxNsW6ps3-Ng3Y5AGiOV4Umr4O1_xM7tPLsl4GByHpcLJuULqfKOyNsG-JFb9AdIBMyBQgdzbjDnNusUPAQKe5ZeLVJvR1sddWWPnfNEJfwGiSySeOBiqebWciVc49xFAUmq4ee05WHvHs0iVdg3Hjlp-mfGKJ3mUjHv48L70_b28GSzcLvZfFYP-jeLvqPJ-aNe6swoVTAcLXBLk90fYfS_gL-HUfDj-hzkevNd3eVXIORfzma7lg</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Hall, Peter</creator><creator>Hosseini-Nasab, Mohammad</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200602</creationdate><title>On properties of functional principal components analysis</title><author>Hall, Peter ; Hosseini-Nasab, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>Bootstrap method</topic><topic>Confidence interval</topic><topic>Covariance</topic><topic>Cross-validation</topic><topic>Data analysis</topic><topic>Eigenfunction</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Error rates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Operator theory</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Probability and statistics</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simultaneous confidence region</topic><topic>Statistical median</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Hosseini-Nasab, Mohammad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Peter</au><au>Hosseini-Nasab, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On properties of functional principal components analysis</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2006-02</date><risdate>2006</risdate><volume>68</volume><issue>1</issue><spage>109</spage><epage>126</epage><pages>109-126</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2005.00535.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2006-02, Vol.68 (1), p.109-126
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_37735752
source RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Approximation
Bootstrap method
Confidence interval
Covariance
Cross-validation
Data analysis
Eigenfunction
Eigenvalue
Eigenvalues
Error rates
Estimators
Exact sciences and technology
Linear inference, regression
Linear regression
Mathematical analysis
Mathematics
Multivariate analysis
Operator theory
Principal component analysis
Principal components analysis
Probability and statistics
Quantitative analysis
Regression analysis
Sample size
Sciences and techniques of general use
Simultaneous confidence region
Statistical median
Statistical methods
Statistics
Studies
title On properties of functional principal components analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20properties%20of%20functional%20principal%20components%20analysis&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Hall,%20Peter&rft.date=2006-02&rft.volume=68&rft.issue=1&rft.spage=109&rft.epage=126&rft.pages=109-126&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2005.00535.x&rft_dat=%3Cjstor_proqu%3E3647559%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200866380&rft_id=info:pmid/&rft_jstor_id=3647559&rfr_iscdi=true