On properties of functional principal components analysis
Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as th...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2006-02, Vol.68 (1), p.109-126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 68 |
creator | Hall, Peter Hosseini-Nasab, Mohammad |
description | Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors. |
doi_str_mv | 10.1111/j.1467-9868.2005.00535.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37735752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3647559</jstor_id><sourcerecordid>3647559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCVKAv_gEOEBLcEJ47t5MABKuiHVq3ULXAcTRJHJGTj1JOF3X_PpKkWiVMtjcb2e2_0_OQgCBMRJ7w-dHGSaRMVuc7jVAgVc0kV758Fp0fgOe-lLiKTJemL4CVRJ3hpI0-D4mYIR-9G66fWUuiasNkN1dS6AXsG2qFqR95Vbju6wQ4ThcjIgVp6FZw02JN9_dhXwbevX-7OLqL1zfnl2ad1VCljVJSkyqS6LDKla4G1bWohK0RR2hRRpbKodca30paaMZvLUvG5Fk2ttSwR5Sp4v8xlm_c7SxNsW6ps3-Ng3Y5AGiOV4Umr4O1_xM7tPLsl4GByHpcLJuULqfKOyNsG-JFb9AdIBMyBQgdzbjDnNusUPAQKe5ZeLVJvR1sddWWPnfNEJfwGiSySeOBiqebWciVc49xFAUmq4ee05WHvHs0iVdg3Hjlp-mfGKJ3mUjHv48L70_b28GSzcLvZfFYP-jeLvqPJ-aNe6swoVTAcLXBLk90fYfS_gL-HUfDj-hzkevNd3eVXIORfzma7lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200866380</pqid></control><display><type>article</type><title>On properties of functional principal components analysis</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hall, Peter ; Hosseini-Nasab, Mohammad</creator><creatorcontrib>Hall, Peter ; Hosseini-Nasab, Mohammad</creatorcontrib><description>Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2005.00535.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Approximation ; Bootstrap method ; Confidence interval ; Covariance ; Cross-validation ; Data analysis ; Eigenfunction ; Eigenvalue ; Eigenvalues ; Error rates ; Estimators ; Exact sciences and technology ; Linear inference, regression ; Linear regression ; Mathematical analysis ; Mathematics ; Multivariate analysis ; Operator theory ; Principal component analysis ; Principal components analysis ; Probability and statistics ; Quantitative analysis ; Regression analysis ; Sample size ; Sciences and techniques of general use ; Simultaneous confidence region ; Statistical median ; Statistical methods ; Statistics ; Studies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2006-02, Vol.68 (1), p.109-126</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</citedby><cites>FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3647559$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3647559$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1416,4005,27922,27923,45572,45573,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17562835$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a68_3ay_3a2006_3ai_3a1_3ap_3a109-126.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Hosseini-Nasab, Mohammad</creatorcontrib><title>On properties of functional principal components analysis</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.</description><subject>Approximation</subject><subject>Bootstrap method</subject><subject>Confidence interval</subject><subject>Covariance</subject><subject>Cross-validation</subject><subject>Data analysis</subject><subject>Eigenfunction</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Error rates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Operator theory</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Probability and statistics</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simultaneous confidence region</subject><subject>Statistical median</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUk1v1DAQjRCVKAv_gEOEBLcEJ47t5MABKuiHVq3ULXAcTRJHJGTj1JOF3X_PpKkWiVMtjcb2e2_0_OQgCBMRJ7w-dHGSaRMVuc7jVAgVc0kV758Fp0fgOe-lLiKTJemL4CVRJ3hpI0-D4mYIR-9G66fWUuiasNkN1dS6AXsG2qFqR95Vbju6wQ4ThcjIgVp6FZw02JN9_dhXwbevX-7OLqL1zfnl2ad1VCljVJSkyqS6LDKla4G1bWohK0RR2hRRpbKodca30paaMZvLUvG5Fk2ttSwR5Sp4v8xlm_c7SxNsW6ps3-Ng3Y5AGiOV4Umr4O1_xM7tPLsl4GByHpcLJuULqfKOyNsG-JFb9AdIBMyBQgdzbjDnNusUPAQKe5ZeLVJvR1sddWWPnfNEJfwGiSySeOBiqebWciVc49xFAUmq4ee05WHvHs0iVdg3Hjlp-mfGKJ3mUjHv48L70_b28GSzcLvZfFYP-jeLvqPJ-aNe6swoVTAcLXBLk90fYfS_gL-HUfDj-hzkevNd3eVXIORfzma7lg</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Hall, Peter</creator><creator>Hosseini-Nasab, Mohammad</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200602</creationdate><title>On properties of functional principal components analysis</title><author>Hall, Peter ; Hosseini-Nasab, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5775-125726b9456d0adefd03caa0be2aa5239d64def3eb6efde83b54ded0fd663baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>Bootstrap method</topic><topic>Confidence interval</topic><topic>Covariance</topic><topic>Cross-validation</topic><topic>Data analysis</topic><topic>Eigenfunction</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Error rates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Operator theory</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Probability and statistics</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simultaneous confidence region</topic><topic>Statistical median</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Peter</creatorcontrib><creatorcontrib>Hosseini-Nasab, Mohammad</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Peter</au><au>Hosseini-Nasab, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On properties of functional principal components analysis</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2006-02</date><risdate>2006</risdate><volume>68</volume><issue>1</issue><spage>109</spage><epage>126</epage><pages>109-126</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n-1/2, n-1, n-3/2, ..., where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n-1/2illustrates first-order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first-order effect on properties of eigenfunction estimators, but only a second-order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2005.00535.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2006-02, Vol.68 (1), p.109-126 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_37735752 |
source | RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Approximation Bootstrap method Confidence interval Covariance Cross-validation Data analysis Eigenfunction Eigenvalue Eigenvalues Error rates Estimators Exact sciences and technology Linear inference, regression Linear regression Mathematical analysis Mathematics Multivariate analysis Operator theory Principal component analysis Principal components analysis Probability and statistics Quantitative analysis Regression analysis Sample size Sciences and techniques of general use Simultaneous confidence region Statistical median Statistical methods Statistics Studies |
title | On properties of functional principal components analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20properties%20of%20functional%20principal%20components%20analysis&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Hall,%20Peter&rft.date=2006-02&rft.volume=68&rft.issue=1&rft.spage=109&rft.epage=126&rft.pages=109-126&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2005.00535.x&rft_dat=%3Cjstor_proqu%3E3647559%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200866380&rft_id=info:pmid/&rft_jstor_id=3647559&rfr_iscdi=true |