Infinite Inequality Systems and Cardinal Revelations
Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak i...
Gespeichert in:
Veröffentlicht in: | Economic theory 2005-11, Vol.26 (4), p.947-971 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 971 |
---|---|
container_issue | 4 |
container_start_page | 947 |
container_title | Economic theory |
container_volume | 26 |
creator | Richter, Marcel K. Wong, Kam-Chau |
description | Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory. |
doi_str_mv | 10.1007/s00199-004-0578-1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37717810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25055991</jstor_id><sourcerecordid>25055991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d0d3b7b65797243fd0c45f4d34380ddfbbe97c2c5887c2a1b44b267b4e5d56553</originalsourceid><addsrcrecordid>eNpdkEtLxDAURoMoOI7-ABdCceEuevNqkqUMPgoDgo91SJsUMnTamaQV5t-boeLC1bc553I5CF0TuCcA8iEBEK0xAMcgpMLkBC0IZxQDl_oULUAzhSkV-hxdpLQBACFKtUC86tvQh9EXVe_3k-3CeCg-Dmn021TY3hUrG13obVe8-2_f2TEMfbpEZ63tkr_63SX6en76XL3i9dtLtXpc44YpOWIHjtWyLoXUknLWOmi4aLljnClwrq1rr2VDG6FUHktqzmtaypp74UQpBFuiu_nuLg77yafRbENqfNfZ3g9TMkxKIhWBDN7-AzfDFPPXyVDKCSe5TYbIDDVxSCn61uxi2Np4MATMMaKZI5oc0RwjGpKdm9nZpHGIfwIVOZ_WhP0AYn9tFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224141199</pqid></control><display><type>article</type><title>Infinite Inequality Systems and Cardinal Revelations</title><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Richter, Marcel K. ; Wong, Kam-Chau</creator><creatorcontrib>Richter, Marcel K. ; Wong, Kam-Chau</creatorcontrib><description>Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-004-0578-1</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Axioms ; Consumers ; Correspondence ; Economic incentives ; Economic systems ; Economic theory ; Economics ; Inequality ; Linear inequalities ; Mathematical economics ; Mathematical functions ; Mathematical theorems ; Preferences ; Principal-agent theory ; Rationality ; Revenue ; Solvability ; Studies ; Topological theorems ; Utility functions ; Utility theory</subject><ispartof>Economic theory, 2005-11, Vol.26 (4), p.947-971</ispartof><rights>Copyright 2005 Springer-Verlag Berlin Heidelberg</rights><rights>Copyright Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d0d3b7b65797243fd0c45f4d34380ddfbbe97c2c5887c2a1b44b267b4e5d56553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25055991$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25055991$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27911,27912,58004,58237</link.rule.ids></links><search><creatorcontrib>Richter, Marcel K.</creatorcontrib><creatorcontrib>Wong, Kam-Chau</creatorcontrib><title>Infinite Inequality Systems and Cardinal Revelations</title><title>Economic theory</title><description>Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.</description><subject>Axioms</subject><subject>Consumers</subject><subject>Correspondence</subject><subject>Economic incentives</subject><subject>Economic systems</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Inequality</subject><subject>Linear inequalities</subject><subject>Mathematical economics</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Preferences</subject><subject>Principal-agent theory</subject><subject>Rationality</subject><subject>Revenue</subject><subject>Solvability</subject><subject>Studies</subject><subject>Topological theorems</subject><subject>Utility functions</subject><subject>Utility theory</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLxDAURoMoOI7-ABdCceEuevNqkqUMPgoDgo91SJsUMnTamaQV5t-boeLC1bc553I5CF0TuCcA8iEBEK0xAMcgpMLkBC0IZxQDl_oULUAzhSkV-hxdpLQBACFKtUC86tvQh9EXVe_3k-3CeCg-Dmn021TY3hUrG13obVe8-2_f2TEMfbpEZ63tkr_63SX6en76XL3i9dtLtXpc44YpOWIHjtWyLoXUknLWOmi4aLljnClwrq1rr2VDG6FUHktqzmtaypp74UQpBFuiu_nuLg77yafRbENqfNfZ3g9TMkxKIhWBDN7-AzfDFPPXyVDKCSe5TYbIDDVxSCn61uxi2Np4MATMMaKZI5oc0RwjGpKdm9nZpHGIfwIVOZ_WhP0AYn9tFg</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Richter, Marcel K.</creator><creator>Wong, Kam-Chau</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20051101</creationdate><title>Infinite Inequality Systems and Cardinal Revelations</title><author>Richter, Marcel K. ; Wong, Kam-Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d0d3b7b65797243fd0c45f4d34380ddfbbe97c2c5887c2a1b44b267b4e5d56553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Axioms</topic><topic>Consumers</topic><topic>Correspondence</topic><topic>Economic incentives</topic><topic>Economic systems</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Inequality</topic><topic>Linear inequalities</topic><topic>Mathematical economics</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Preferences</topic><topic>Principal-agent theory</topic><topic>Rationality</topic><topic>Revenue</topic><topic>Solvability</topic><topic>Studies</topic><topic>Topological theorems</topic><topic>Utility functions</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Marcel K.</creatorcontrib><creatorcontrib>Wong, Kam-Chau</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Marcel K.</au><au>Wong, Kam-Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite Inequality Systems and Cardinal Revelations</atitle><jtitle>Economic theory</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>26</volume><issue>4</issue><spage>947</spage><epage>971</epage><pages>947-971</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00199-004-0578-1</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-2259 |
ispartof | Economic theory, 2005-11, Vol.26 (4), p.947-971 |
issn | 0938-2259 1432-0479 |
language | eng |
recordid | cdi_proquest_miscellaneous_37717810 |
source | EBSCOhost Business Source Complete; Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | Axioms Consumers Correspondence Economic incentives Economic systems Economic theory Economics Inequality Linear inequalities Mathematical economics Mathematical functions Mathematical theorems Preferences Principal-agent theory Rationality Revenue Solvability Studies Topological theorems Utility functions Utility theory |
title | Infinite Inequality Systems and Cardinal Revelations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20Inequality%20Systems%20and%20Cardinal%20Revelations&rft.jtitle=Economic%20theory&rft.au=Richter,%20Marcel%20K.&rft.date=2005-11-01&rft.volume=26&rft.issue=4&rft.spage=947&rft.epage=971&rft.pages=947-971&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-004-0578-1&rft_dat=%3Cjstor_proqu%3E25055991%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224141199&rft_id=info:pmid/&rft_jstor_id=25055991&rfr_iscdi=true |