Infinite Inequality Systems and Cardinal Revelations

Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economic theory 2005-11, Vol.26 (4), p.947-971
Hauptverfasser: Richter, Marcel K., Wong, Kam-Chau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 4
container_start_page 947
container_title Economic theory
container_volume 26
creator Richter, Marcel K.
Wong, Kam-Chau
description Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}>c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.
doi_str_mv 10.1007/s00199-004-0578-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37717810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25055991</jstor_id><sourcerecordid>25055991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d0d3b7b65797243fd0c45f4d34380ddfbbe97c2c5887c2a1b44b267b4e5d56553</originalsourceid><addsrcrecordid>eNpdkEtLxDAURoMoOI7-ABdCceEuevNqkqUMPgoDgo91SJsUMnTamaQV5t-boeLC1bc553I5CF0TuCcA8iEBEK0xAMcgpMLkBC0IZxQDl_oULUAzhSkV-hxdpLQBACFKtUC86tvQh9EXVe_3k-3CeCg-Dmn021TY3hUrG13obVe8-2_f2TEMfbpEZ63tkr_63SX6en76XL3i9dtLtXpc44YpOWIHjtWyLoXUknLWOmi4aLljnClwrq1rr2VDG6FUHktqzmtaypp74UQpBFuiu_nuLg77yafRbENqfNfZ3g9TMkxKIhWBDN7-AzfDFPPXyVDKCSe5TYbIDDVxSCn61uxi2Np4MATMMaKZI5oc0RwjGpKdm9nZpHGIfwIVOZ_WhP0AYn9tFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224141199</pqid></control><display><type>article</type><title>Infinite Inequality Systems and Cardinal Revelations</title><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Richter, Marcel K. ; Wong, Kam-Chau</creator><creatorcontrib>Richter, Marcel K. ; Wong, Kam-Chau</creatorcontrib><description>Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}&gt;c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-004-0578-1</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Axioms ; Consumers ; Correspondence ; Economic incentives ; Economic systems ; Economic theory ; Economics ; Inequality ; Linear inequalities ; Mathematical economics ; Mathematical functions ; Mathematical theorems ; Preferences ; Principal-agent theory ; Rationality ; Revenue ; Solvability ; Studies ; Topological theorems ; Utility functions ; Utility theory</subject><ispartof>Economic theory, 2005-11, Vol.26 (4), p.947-971</ispartof><rights>Copyright 2005 Springer-Verlag Berlin Heidelberg</rights><rights>Copyright Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d0d3b7b65797243fd0c45f4d34380ddfbbe97c2c5887c2a1b44b267b4e5d56553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25055991$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25055991$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27911,27912,58004,58237</link.rule.ids></links><search><creatorcontrib>Richter, Marcel K.</creatorcontrib><creatorcontrib>Wong, Kam-Chau</creatorcontrib><title>Infinite Inequality Systems and Cardinal Revelations</title><title>Economic theory</title><description>Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}&gt;c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.</description><subject>Axioms</subject><subject>Consumers</subject><subject>Correspondence</subject><subject>Economic incentives</subject><subject>Economic systems</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Inequality</subject><subject>Linear inequalities</subject><subject>Mathematical economics</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Preferences</subject><subject>Principal-agent theory</subject><subject>Rationality</subject><subject>Revenue</subject><subject>Solvability</subject><subject>Studies</subject><subject>Topological theorems</subject><subject>Utility functions</subject><subject>Utility theory</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLxDAURoMoOI7-ABdCceEuevNqkqUMPgoDgo91SJsUMnTamaQV5t-boeLC1bc553I5CF0TuCcA8iEBEK0xAMcgpMLkBC0IZxQDl_oULUAzhSkV-hxdpLQBACFKtUC86tvQh9EXVe_3k-3CeCg-Dmn021TY3hUrG13obVe8-2_f2TEMfbpEZ63tkr_63SX6en76XL3i9dtLtXpc44YpOWIHjtWyLoXUknLWOmi4aLljnClwrq1rr2VDG6FUHktqzmtaypp74UQpBFuiu_nuLg77yafRbENqfNfZ3g9TMkxKIhWBDN7-AzfDFPPXyVDKCSe5TYbIDDVxSCn61uxi2Np4MATMMaKZI5oc0RwjGpKdm9nZpHGIfwIVOZ_WhP0AYn9tFg</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Richter, Marcel K.</creator><creator>Wong, Kam-Chau</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20051101</creationdate><title>Infinite Inequality Systems and Cardinal Revelations</title><author>Richter, Marcel K. ; Wong, Kam-Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d0d3b7b65797243fd0c45f4d34380ddfbbe97c2c5887c2a1b44b267b4e5d56553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Axioms</topic><topic>Consumers</topic><topic>Correspondence</topic><topic>Economic incentives</topic><topic>Economic systems</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Inequality</topic><topic>Linear inequalities</topic><topic>Mathematical economics</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Preferences</topic><topic>Principal-agent theory</topic><topic>Rationality</topic><topic>Revenue</topic><topic>Solvability</topic><topic>Studies</topic><topic>Topological theorems</topic><topic>Utility functions</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Marcel K.</creatorcontrib><creatorcontrib>Wong, Kam-Chau</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Marcel K.</au><au>Wong, Kam-Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite Inequality Systems and Cardinal Revelations</atitle><jtitle>Economic theory</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>26</volume><issue>4</issue><spage>947</spage><epage>971</epage><pages>947-971</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>Many economics problems are maximization or minimization problems, and can be formalized as problems of solving "linear difference systems" of the form$r_{i}-r_{j}\geq c_{ij}$and$r_{k}-r_{l}&gt;c_{kl}$, for r-unknowns, with given c-constants. They typically involve strict as well as weak inequalities, with infinitely many inequalities and unknowns. Since strict inequalities are not preserved under passage to the limit, infinite systems with strict inequalities are notoriously hard to solve. We introduce a unifying tool for solving them. Our main result (Theorem 1 for the countable case, Theorem 2 for the not-necessarily-countable case) introduces a uniform solvability criterion (the ω-Axiom), and our proof yields a method for solving those that are solvable. The axiom's economic intuition extends the traditional ordinal notion of revealed preference to a cardinal notion. We give applications in producer theory, consumer theory, implementation theory, and constrained maximization theory.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00199-004-0578-1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-2259
ispartof Economic theory, 2005-11, Vol.26 (4), p.947-971
issn 0938-2259
1432-0479
language eng
recordid cdi_proquest_miscellaneous_37717810
source EBSCOhost Business Source Complete; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Axioms
Consumers
Correspondence
Economic incentives
Economic systems
Economic theory
Economics
Inequality
Linear inequalities
Mathematical economics
Mathematical functions
Mathematical theorems
Preferences
Principal-agent theory
Rationality
Revenue
Solvability
Studies
Topological theorems
Utility functions
Utility theory
title Infinite Inequality Systems and Cardinal Revelations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20Inequality%20Systems%20and%20Cardinal%20Revelations&rft.jtitle=Economic%20theory&rft.au=Richter,%20Marcel%20K.&rft.date=2005-11-01&rft.volume=26&rft.issue=4&rft.spage=947&rft.epage=971&rft.pages=947-971&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-004-0578-1&rft_dat=%3Cjstor_proqu%3E25055991%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224141199&rft_id=info:pmid/&rft_jstor_id=25055991&rfr_iscdi=true