Separating microstructure noise from volatility
There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moment...
Gespeichert in:
Veröffentlicht in: | Journal of financial economics 2006-03, Vol.79 (3), p.655-692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 3 |
container_start_page | 655 |
container_title | Journal of financial economics |
container_volume | 79 |
creator | Bandi, Federico M. Russell, Jeffrey R. |
description | There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the
unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally
unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components.
In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains. |
doi_str_mv | 10.1016/j.jfineco.2005.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37710301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304405X05001534</els_id><sourcerecordid>991581251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVJoZu0P6Gw9NCbnZFlSfaplJC2CYEe2kJvQiuPWhnbciV7Yf99Z3HIIZcInt7le8PMY-w9h5IDV9d92fswoYtlBSBL4CXZK7bjjW6LSuv6gu1AQF3UIH-_YZc590BPy3bHrn_gbJNdwvRnPwaXYl7S6pY14X6KIePepzjuj3EgZAjL6S177e2Q8d2jX7FfX25_3nwrHr5_vbv5_FA4qaqlsKIB9FCLtmp5A7Y7KGWtsrw5tEJ79AewGhrFZSeUEBKUbzouUfquajusxBX7uM2dU_y3Yl7MGLLDYbATxjUboTWnmziBH56BfVzTRLuZSnANqqkbguQGnQ_MCb2ZUxhtOhkO5tyh6c1jh-bcoQFuyCh3v-USzuieQoi40eZohNUtfScSJRVZIAnSTFJSGtVW5u8y0rBP2zCk3o4Bk8ku4OSwCwndYroYXljnPwAVlWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231706848</pqid></control><display><type>article</type><title>Separating microstructure noise from volatility</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bandi, Federico M. ; Russell, Jeffrey R.</creator><creatorcontrib>Bandi, Federico M. ; Russell, Jeffrey R.</creatorcontrib><description>There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the
unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally
unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components.
In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.</description><identifier>ISSN: 0304-405X</identifier><identifier>EISSN: 1879-2774</identifier><identifier>DOI: 10.1016/j.jfineco.2005.01.005</identifier><identifier>CODEN: JFECDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Data analysis ; Economic structure ; Finance ; Financial economics ; Frequency distribution ; High frequency data ; Microstructure noise ; Rates of return ; Securities trading ; Studies ; Volatility ; Volatility timing</subject><ispartof>Journal of financial economics, 2006-03, Vol.79 (3), p.655-692</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</citedby><cites>FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfineco.2005.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4005,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejfinec/v_3a79_3ay_3a2006_3ai_3a3_3ap_3a655-692.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Russell, Jeffrey R.</creatorcontrib><title>Separating microstructure noise from volatility</title><title>Journal of financial economics</title><description>There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the
unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally
unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components.
In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.</description><subject>Data analysis</subject><subject>Economic structure</subject><subject>Finance</subject><subject>Financial economics</subject><subject>Frequency distribution</subject><subject>High frequency data</subject><subject>Microstructure noise</subject><subject>Rates of return</subject><subject>Securities trading</subject><subject>Studies</subject><subject>Volatility</subject><subject>Volatility timing</subject><issn>0304-405X</issn><issn>1879-2774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEFr3DAQhUVJoZu0P6Gw9NCbnZFlSfaplJC2CYEe2kJvQiuPWhnbciV7Yf99Z3HIIZcInt7le8PMY-w9h5IDV9d92fswoYtlBSBL4CXZK7bjjW6LSuv6gu1AQF3UIH-_YZc590BPy3bHrn_gbJNdwvRnPwaXYl7S6pY14X6KIePepzjuj3EgZAjL6S177e2Q8d2jX7FfX25_3nwrHr5_vbv5_FA4qaqlsKIB9FCLtmp5A7Y7KGWtsrw5tEJ79AewGhrFZSeUEBKUbzouUfquajusxBX7uM2dU_y3Yl7MGLLDYbATxjUboTWnmziBH56BfVzTRLuZSnANqqkbguQGnQ_MCb2ZUxhtOhkO5tyh6c1jh-bcoQFuyCh3v-USzuieQoi40eZohNUtfScSJRVZIAnSTFJSGtVW5u8y0rBP2zCk3o4Bk8ku4OSwCwndYroYXljnPwAVlWc</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Bandi, Federico M.</creator><creator>Russell, Jeffrey R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20060301</creationdate><title>Separating microstructure noise from volatility</title><author>Bandi, Federico M. ; Russell, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data analysis</topic><topic>Economic structure</topic><topic>Finance</topic><topic>Financial economics</topic><topic>Frequency distribution</topic><topic>High frequency data</topic><topic>Microstructure noise</topic><topic>Rates of return</topic><topic>Securities trading</topic><topic>Studies</topic><topic>Volatility</topic><topic>Volatility timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Russell, Jeffrey R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of financial economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandi, Federico M.</au><au>Russell, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating microstructure noise from volatility</atitle><jtitle>Journal of financial economics</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>79</volume><issue>3</issue><spage>655</spage><epage>692</epage><pages>655-692</pages><issn>0304-405X</issn><eissn>1879-2774</eissn><coden>JFECDT</coden><abstract>There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the
unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally
unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components.
In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jfineco.2005.01.005</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-405X |
ispartof | Journal of financial economics, 2006-03, Vol.79 (3), p.655-692 |
issn | 0304-405X 1879-2774 |
language | eng |
recordid | cdi_proquest_miscellaneous_37710301 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | Data analysis Economic structure Finance Financial economics Frequency distribution High frequency data Microstructure noise Rates of return Securities trading Studies Volatility Volatility timing |
title | Separating microstructure noise from volatility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20microstructure%20noise%20from%20volatility&rft.jtitle=Journal%20of%20financial%20economics&rft.au=Bandi,%20Federico%20M.&rft.date=2006-03-01&rft.volume=79&rft.issue=3&rft.spage=655&rft.epage=692&rft.pages=655-692&rft.issn=0304-405X&rft.eissn=1879-2774&rft.coden=JFECDT&rft_id=info:doi/10.1016/j.jfineco.2005.01.005&rft_dat=%3Cproquest_cross%3E991581251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231706848&rft_id=info:pmid/&rft_els_id=S0304405X05001534&rfr_iscdi=true |