Separating microstructure noise from volatility

There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of financial economics 2006-03, Vol.79 (3), p.655-692
Hauptverfasser: Bandi, Federico M., Russell, Jeffrey R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 3
container_start_page 655
container_title Journal of financial economics
container_volume 79
creator Bandi, Federico M.
Russell, Jeffrey R.
description There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components. In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.
doi_str_mv 10.1016/j.jfineco.2005.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37710301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304405X05001534</els_id><sourcerecordid>991581251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVJoZu0P6Gw9NCbnZFlSfaplJC2CYEe2kJvQiuPWhnbciV7Yf99Z3HIIZcInt7le8PMY-w9h5IDV9d92fswoYtlBSBL4CXZK7bjjW6LSuv6gu1AQF3UIH-_YZc590BPy3bHrn_gbJNdwvRnPwaXYl7S6pY14X6KIePepzjuj3EgZAjL6S177e2Q8d2jX7FfX25_3nwrHr5_vbv5_FA4qaqlsKIB9FCLtmp5A7Y7KGWtsrw5tEJ79AewGhrFZSeUEBKUbzouUfquajusxBX7uM2dU_y3Yl7MGLLDYbATxjUboTWnmziBH56BfVzTRLuZSnANqqkbguQGnQ_MCb2ZUxhtOhkO5tyh6c1jh-bcoQFuyCh3v-USzuieQoi40eZohNUtfScSJRVZIAnSTFJSGtVW5u8y0rBP2zCk3o4Bk8ku4OSwCwndYroYXljnPwAVlWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231706848</pqid></control><display><type>article</type><title>Separating microstructure noise from volatility</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bandi, Federico M. ; Russell, Jeffrey R.</creator><creatorcontrib>Bandi, Federico M. ; Russell, Jeffrey R.</creatorcontrib><description>There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components. In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.</description><identifier>ISSN: 0304-405X</identifier><identifier>EISSN: 1879-2774</identifier><identifier>DOI: 10.1016/j.jfineco.2005.01.005</identifier><identifier>CODEN: JFECDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Data analysis ; Economic structure ; Finance ; Financial economics ; Frequency distribution ; High frequency data ; Microstructure noise ; Rates of return ; Securities trading ; Studies ; Volatility ; Volatility timing</subject><ispartof>Journal of financial economics, 2006-03, Vol.79 (3), p.655-692</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</citedby><cites>FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfineco.2005.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4005,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejfinec/v_3a79_3ay_3a2006_3ai_3a3_3ap_3a655-692.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Russell, Jeffrey R.</creatorcontrib><title>Separating microstructure noise from volatility</title><title>Journal of financial economics</title><description>There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components. In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.</description><subject>Data analysis</subject><subject>Economic structure</subject><subject>Finance</subject><subject>Financial economics</subject><subject>Frequency distribution</subject><subject>High frequency data</subject><subject>Microstructure noise</subject><subject>Rates of return</subject><subject>Securities trading</subject><subject>Studies</subject><subject>Volatility</subject><subject>Volatility timing</subject><issn>0304-405X</issn><issn>1879-2774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEFr3DAQhUVJoZu0P6Gw9NCbnZFlSfaplJC2CYEe2kJvQiuPWhnbciV7Yf99Z3HIIZcInt7le8PMY-w9h5IDV9d92fswoYtlBSBL4CXZK7bjjW6LSuv6gu1AQF3UIH-_YZc590BPy3bHrn_gbJNdwvRnPwaXYl7S6pY14X6KIePepzjuj3EgZAjL6S177e2Q8d2jX7FfX25_3nwrHr5_vbv5_FA4qaqlsKIB9FCLtmp5A7Y7KGWtsrw5tEJ79AewGhrFZSeUEBKUbzouUfquajusxBX7uM2dU_y3Yl7MGLLDYbATxjUboTWnmziBH56BfVzTRLuZSnANqqkbguQGnQ_MCb2ZUxhtOhkO5tyh6c1jh-bcoQFuyCh3v-USzuieQoi40eZohNUtfScSJRVZIAnSTFJSGtVW5u8y0rBP2zCk3o4Bk8ku4OSwCwndYroYXljnPwAVlWc</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Bandi, Federico M.</creator><creator>Russell, Jeffrey R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20060301</creationdate><title>Separating microstructure noise from volatility</title><author>Bandi, Federico M. ; Russell, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-a380ef043929180adb66aa6a18b937fefb0a708615d3633506f8d15e5fd29de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data analysis</topic><topic>Economic structure</topic><topic>Finance</topic><topic>Financial economics</topic><topic>Frequency distribution</topic><topic>High frequency data</topic><topic>Microstructure noise</topic><topic>Rates of return</topic><topic>Securities trading</topic><topic>Studies</topic><topic>Volatility</topic><topic>Volatility timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandi, Federico M.</creatorcontrib><creatorcontrib>Russell, Jeffrey R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of financial economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandi, Federico M.</au><au>Russell, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating microstructure noise from volatility</atitle><jtitle>Journal of financial economics</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>79</volume><issue>3</issue><spage>655</spage><epage>692</epage><pages>655-692</pages><issn>0304-405X</issn><eissn>1879-2774</eissn><coden>JFECDT</coden><abstract>There are two variance components embedded in the returns constructed using high frequency asset prices: the time-varying variance of the unobservable efficient returns that would prevail in a frictionless economy and the variance of the equally unobservable microstructure noise. Using sample moments of high frequency return data recorded at different frequencies, we provide a simple and robust technique to identify both variance components. In the context of a volatility-timing trading strategy, we show that careful (optimal) separation of the two volatility components of the observed stock returns yields substantial utility gains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jfineco.2005.01.005</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-405X
ispartof Journal of financial economics, 2006-03, Vol.79 (3), p.655-692
issn 0304-405X
1879-2774
language eng
recordid cdi_proquest_miscellaneous_37710301
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Data analysis
Economic structure
Finance
Financial economics
Frequency distribution
High frequency data
Microstructure noise
Rates of return
Securities trading
Studies
Volatility
Volatility timing
title Separating microstructure noise from volatility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20microstructure%20noise%20from%20volatility&rft.jtitle=Journal%20of%20financial%20economics&rft.au=Bandi,%20Federico%20M.&rft.date=2006-03-01&rft.volume=79&rft.issue=3&rft.spage=655&rft.epage=692&rft.pages=655-692&rft.issn=0304-405X&rft.eissn=1879-2774&rft.coden=JFECDT&rft_id=info:doi/10.1016/j.jfineco.2005.01.005&rft_dat=%3Cproquest_cross%3E991581251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231706848&rft_id=info:pmid/&rft_els_id=S0304405X05001534&rfr_iscdi=true