Efficiency Bounds for Semiparametric Regression

The paper derives efficiency bounds for conditional moment restrictions with a nonparametric component. The data form a random sample from a distribution F. There is a given function of the data and a parameter. The restriction is that a conditional expectation of this function is zero at some point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 1992-05, Vol.60 (3), p.567-596
1. Verfasser: Chamberlain, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 3
container_start_page 567
container_title Econometrica
container_volume 60
creator Chamberlain, Gary
description The paper derives efficiency bounds for conditional moment restrictions with a nonparametric component. The data form a random sample from a distribution F. There is a given function of the data and a parameter. The restriction is that a conditional expectation of this function is zero at some point in the parameter space. The parameter has two parts: a finite-dimensional component θ and a general function h, which is evaluated at a subset of the conditioning variables. An example is a regression function that is additive in parametric and nonparametric components, as arises in sample selection models. If F is assumed to be multinomial with known (finite) support, then the problem becomes parametric, with the values of h at the mass points forming part of the parameter vector. Then an efficiency bound for θ and for linear functionals of h can be obtained from the Fisher information matrix, as in Chamberlain (1987). The bound depends only upon certain conditional moments and not upon the support of the distribution. A general F satisfying the restrictions can be approximated by a multinomial distribution satisfying the restrictions, and so the explicit form of the multinomial bound applies in general. The efficiency bound for θ is extended to a more general model in which different components of h may depend on different known functions of the variables. Although an explicit form for the bound is no longer available, a variational characterization of the bound is provided. The efficiency bound is applied to a random coefficients model for panel data, in which the conditional expectation of the random coefficients given covariates plays the role of the function h. An instrumental-variables estimator is set up within a finite-dimensional, method-of-moments framework. The bound provides guidance on the choice of instrumental variables.
doi_str_mv 10.2307/2951584
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37321600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2951584</jstor_id><sourcerecordid>2951584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-6215537c0569a37f1c24060da15586523ea77121672860c76862931834c4031b3</originalsourceid><addsrcrecordid>eNp90dlKAzEUBuAgCtYFX2FQ0auxJyfrXGqpCxQEl-shphlJmaUmMxd9e1NaFIQKgUD4zp8DPyFnFG6QgRpjIajQfI-MKJc6B5S4T0YAFPNCajwkRzEuAECkMyLjaVV5611rV9ldN7TzmFVdyF5d45cmmMb1wdvsxX0GF6Pv2hNyUJk6utPtfUze76dvk8d89vzwNLmd5ZZp3ecSqRBMWRCyMExV1CIHCXOTnrUUyJxRiiKVCrUEq6SWWDCqGbccGP1gx-Rqk7sM3dfgYl82PlpX16Z13RBLpliaBkjw_A9cdENo024lUq5FUuJfBKygCnmR0MUuRLGQnCmU6_-uN8qGLsbgqnIZfGPCqqRQrgsotwUkebnNM9GaugqmtT7-cMGQMS1-2SL2XdiZ9g0diokc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214852165</pqid></control><display><type>article</type><title>Efficiency Bounds for Semiparametric Regression</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chamberlain, Gary</creator><creatorcontrib>Chamberlain, Gary</creatorcontrib><description>The paper derives efficiency bounds for conditional moment restrictions with a nonparametric component. The data form a random sample from a distribution F. There is a given function of the data and a parameter. The restriction is that a conditional expectation of this function is zero at some point in the parameter space. The parameter has two parts: a finite-dimensional component θ and a general function h, which is evaluated at a subset of the conditioning variables. An example is a regression function that is additive in parametric and nonparametric components, as arises in sample selection models. If F is assumed to be multinomial with known (finite) support, then the problem becomes parametric, with the values of h at the mass points forming part of the parameter vector. Then an efficiency bound for θ and for linear functionals of h can be obtained from the Fisher information matrix, as in Chamberlain (1987). The bound depends only upon certain conditional moments and not upon the support of the distribution. A general F satisfying the restrictions can be approximated by a multinomial distribution satisfying the restrictions, and so the explicit form of the multinomial bound applies in general. The efficiency bound for θ is extended to a more general model in which different components of h may depend on different known functions of the variables. Although an explicit form for the bound is no longer available, a variational characterization of the bound is provided. The efficiency bound is applied to a random coefficients model for panel data, in which the conditional expectation of the random coefficients given covariates plays the role of the function h. An instrumental-variables estimator is set up within a finite-dimensional, method-of-moments framework. The bound provides guidance on the choice of instrumental variables.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.2307/2951584</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Malden, MA: Econometric Society</publisher><subject>Conditional probabilities ; Econometrics ; Economic efficiency ; Economic models ; Economic statistics ; Economic theory ; Efficiency ; Estimation methods ; Estimators ; Exact sciences and technology ; Linear inference, regression ; Mathematical independent variables ; Mathematical moments ; Mathematical vectors ; Mathematics ; Minimax ; Parametric models ; Probability and statistics ; Random variables ; Regression analysis ; Restrictions ; Sciences and techniques of general use ; Statistics</subject><ispartof>Econometrica, 1992-05, Vol.60 (3), p.567-596</ispartof><rights>Copyright 1992 Econometric Society</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Econometric Society May 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-6215537c0569a37f1c24060da15586523ea77121672860c76862931834c4031b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2951584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2951584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,27873,27928,27929,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5323385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chamberlain, Gary</creatorcontrib><title>Efficiency Bounds for Semiparametric Regression</title><title>Econometrica</title><description>The paper derives efficiency bounds for conditional moment restrictions with a nonparametric component. The data form a random sample from a distribution F. There is a given function of the data and a parameter. The restriction is that a conditional expectation of this function is zero at some point in the parameter space. The parameter has two parts: a finite-dimensional component θ and a general function h, which is evaluated at a subset of the conditioning variables. An example is a regression function that is additive in parametric and nonparametric components, as arises in sample selection models. If F is assumed to be multinomial with known (finite) support, then the problem becomes parametric, with the values of h at the mass points forming part of the parameter vector. Then an efficiency bound for θ and for linear functionals of h can be obtained from the Fisher information matrix, as in Chamberlain (1987). The bound depends only upon certain conditional moments and not upon the support of the distribution. A general F satisfying the restrictions can be approximated by a multinomial distribution satisfying the restrictions, and so the explicit form of the multinomial bound applies in general. The efficiency bound for θ is extended to a more general model in which different components of h may depend on different known functions of the variables. Although an explicit form for the bound is no longer available, a variational characterization of the bound is provided. The efficiency bound is applied to a random coefficients model for panel data, in which the conditional expectation of the random coefficients given covariates plays the role of the function h. An instrumental-variables estimator is set up within a finite-dimensional, method-of-moments framework. The bound provides guidance on the choice of instrumental variables.</description><subject>Conditional probabilities</subject><subject>Econometrics</subject><subject>Economic efficiency</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Efficiency</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Mathematical independent variables</subject><subject>Mathematical moments</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Restrictions</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90dlKAzEUBuAgCtYFX2FQ0auxJyfrXGqpCxQEl-shphlJmaUmMxd9e1NaFIQKgUD4zp8DPyFnFG6QgRpjIajQfI-MKJc6B5S4T0YAFPNCajwkRzEuAECkMyLjaVV5611rV9ldN7TzmFVdyF5d45cmmMb1wdvsxX0GF6Pv2hNyUJk6utPtfUze76dvk8d89vzwNLmd5ZZp3ecSqRBMWRCyMExV1CIHCXOTnrUUyJxRiiKVCrUEq6SWWDCqGbccGP1gx-Rqk7sM3dfgYl82PlpX16Z13RBLpliaBkjw_A9cdENo024lUq5FUuJfBKygCnmR0MUuRLGQnCmU6_-uN8qGLsbgqnIZfGPCqqRQrgsotwUkebnNM9GaugqmtT7-cMGQMS1-2SL2XdiZ9g0diokc</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Chamberlain, Gary</creator><general>Econometric Society</general><general>Blackwell</general><general>George Banta Pub. Co. for the Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FIXVA</scope><scope>FKUCP</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0A</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19920501</creationdate><title>Efficiency Bounds for Semiparametric Regression</title><author>Chamberlain, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-6215537c0569a37f1c24060da15586523ea77121672860c76862931834c4031b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Conditional probabilities</topic><topic>Econometrics</topic><topic>Economic efficiency</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Efficiency</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Mathematical independent variables</topic><topic>Mathematical moments</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Restrictions</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamberlain, Gary</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 03</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Archive</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamberlain, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency Bounds for Semiparametric Regression</atitle><jtitle>Econometrica</jtitle><date>1992-05-01</date><risdate>1992</risdate><volume>60</volume><issue>3</issue><spage>567</spage><epage>596</epage><pages>567-596</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>The paper derives efficiency bounds for conditional moment restrictions with a nonparametric component. The data form a random sample from a distribution F. There is a given function of the data and a parameter. The restriction is that a conditional expectation of this function is zero at some point in the parameter space. The parameter has two parts: a finite-dimensional component θ and a general function h, which is evaluated at a subset of the conditioning variables. An example is a regression function that is additive in parametric and nonparametric components, as arises in sample selection models. If F is assumed to be multinomial with known (finite) support, then the problem becomes parametric, with the values of h at the mass points forming part of the parameter vector. Then an efficiency bound for θ and for linear functionals of h can be obtained from the Fisher information matrix, as in Chamberlain (1987). The bound depends only upon certain conditional moments and not upon the support of the distribution. A general F satisfying the restrictions can be approximated by a multinomial distribution satisfying the restrictions, and so the explicit form of the multinomial bound applies in general. The efficiency bound for θ is extended to a more general model in which different components of h may depend on different known functions of the variables. Although an explicit form for the bound is no longer available, a variational characterization of the bound is provided. The efficiency bound is applied to a random coefficients model for panel data, in which the conditional expectation of the random coefficients given covariates plays the role of the function h. An instrumental-variables estimator is set up within a finite-dimensional, method-of-moments framework. The bound provides guidance on the choice of instrumental variables.</abstract><cop>Malden, MA</cop><pub>Econometric Society</pub><doi>10.2307/2951584</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 1992-05, Vol.60 (3), p.567-596
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_37321600
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Conditional probabilities
Econometrics
Economic efficiency
Economic models
Economic statistics
Economic theory
Efficiency
Estimation methods
Estimators
Exact sciences and technology
Linear inference, regression
Mathematical independent variables
Mathematical moments
Mathematical vectors
Mathematics
Minimax
Parametric models
Probability and statistics
Random variables
Regression analysis
Restrictions
Sciences and techniques of general use
Statistics
title Efficiency Bounds for Semiparametric Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20Bounds%20for%20Semiparametric%20Regression&rft.jtitle=Econometrica&rft.au=Chamberlain,%20Gary&rft.date=1992-05-01&rft.volume=60&rft.issue=3&rft.spage=567&rft.epage=596&rft.pages=567-596&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.2307/2951584&rft_dat=%3Cjstor_proqu%3E2951584%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214852165&rft_id=info:pmid/&rft_jstor_id=2951584&rfr_iscdi=true