Estimation in nonstationary random coefficient autoregressive models

.  We investigate the estimation of parameters in the random coefficient autoregressive (RCA) model Xk = (ϕ + bk)Xk−1 + ek, where (ϕ, ω2, σ2) is the parameter of the process, , . We consider a nonstationary RCA process satisfying E log |ϕ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi‐m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2009-07, Vol.30 (4), p.395-416
Hauptverfasser: Berkes, István, Horváth, Lajos, Ling, Shiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:.  We investigate the estimation of parameters in the random coefficient autoregressive (RCA) model Xk = (ϕ + bk)Xk−1 + ek, where (ϕ, ω2, σ2) is the parameter of the process, , . We consider a nonstationary RCA process satisfying E log |ϕ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi‐maximum likelihood method. The asymptotic normality of the quasi‐maximum likelihood estimator for (ϕ, ω2) is proven so that the unit root problem does not exist in the RCA model.
ISSN:0143-9782
1467-9892
DOI:10.1111/j.1467-9892.2009.00615.x