The application of the Kalman filter to nonstationary time series through time deformation
. An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the or...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 2009-09, Vol.30 (5), p.559-574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 5 |
container_start_page | 559 |
container_title | Journal of time series analysis |
container_volume | 30 |
creator | Wang, Zhu Woodward, Wayne A. Gray, Henry L. |
description | . An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations. |
doi_str_mv | 10.1111/j.1467-9892.2009.00628.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37298114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37298114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</originalsourceid><addsrcrecordid>eNqNkMGO0zAQhi0EEqXwDhEHbil2HMf2gcNqBQtlBYctu4jLyEkm1CGJg51C-_Y4DeqBE5bGY43_bzTzE5IwumHxvG43LC9kqpXONhmlekNpkanN8RFZXT4ekxVlOU-1VNlT8iyEllJW5JKtyLfdHhMzjp2tzGTdkLgmmWLpo-l6MySN7Sb0yeSSwQ1hOkuMPyWT7TEJ6C2GKPfu8H2_1GpsnO_PuufkSWO6gC_-5jX58u7t7vp9evv55sP11W1aiaxQacUFyxvOuZC6EbLOc2F0rbSpRZmbMmMlV40wAisu87KmCrEsRYaNKXNUHPmavFr6jt79PGCYoLehwq4zA7pDAC4zrVjcf01e_iNs3cEPcTaQggleCJ5FkVpElXcheGxg9LaPOwOjMDsOLczGwmwszI7D2XE4RnS7oB5HrC5c2Zl2il4Z-AXccBqvU4wzyo2NIWKMcxYahMxhP_Wx2Zul2W_b4em_h4Dt7u4qviKfLrwNEx4vvPE_oJBcCnj4dAPb-zv6cK-_Qsb_ANC_sOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751536532</pqid></control><display><type>article</type><title>The application of the Kalman filter to nonstationary time series through time deformation</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Zhu ; Woodward, Wayne A. ; Gray, Henry L.</creator><creatorcontrib>Wang, Zhu ; Woodward, Wayne A. ; Gray, Henry L.</creatorcontrib><description>. An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/j.1467-9892.2009.00628.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Econometrics ; Frequency ; Kalman filter ; Kalman filters ; Mathematical analysis ; Nonstationary ; Regression analysis ; state space ; Stationarity ; Statistical methods ; Studies ; Time series ; time transformation ; time-varying frequencies</subject><ispartof>Journal of time series analysis, 2009-09, Vol.30 (5), p.559-574</ispartof><rights>2009 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</citedby><cites>FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9892.2009.00628.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9892.2009.00628.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3994,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajtsera/v_3a30_3ay_3a2009_3ai_3a5_3ap_3a559-574.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhu</creatorcontrib><creatorcontrib>Woodward, Wayne A.</creatorcontrib><creatorcontrib>Gray, Henry L.</creatorcontrib><title>The application of the Kalman filter to nonstationary time series through time deformation</title><title>Journal of time series analysis</title><description>. An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.</description><subject>Econometrics</subject><subject>Frequency</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Nonstationary</subject><subject>Regression analysis</subject><subject>state space</subject><subject>Stationarity</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Time series</subject><subject>time transformation</subject><subject>time-varying frequencies</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkMGO0zAQhi0EEqXwDhEHbil2HMf2gcNqBQtlBYctu4jLyEkm1CGJg51C-_Y4DeqBE5bGY43_bzTzE5IwumHxvG43LC9kqpXONhmlekNpkanN8RFZXT4ekxVlOU-1VNlT8iyEllJW5JKtyLfdHhMzjp2tzGTdkLgmmWLpo-l6MySN7Sb0yeSSwQ1hOkuMPyWT7TEJ6C2GKPfu8H2_1GpsnO_PuufkSWO6gC_-5jX58u7t7vp9evv55sP11W1aiaxQacUFyxvOuZC6EbLOc2F0rbSpRZmbMmMlV40wAisu87KmCrEsRYaNKXNUHPmavFr6jt79PGCYoLehwq4zA7pDAC4zrVjcf01e_iNs3cEPcTaQggleCJ5FkVpElXcheGxg9LaPOwOjMDsOLczGwmwszI7D2XE4RnS7oB5HrC5c2Zl2il4Z-AXccBqvU4wzyo2NIWKMcxYahMxhP_Wx2Zul2W_b4em_h4Dt7u4qviKfLrwNEx4vvPE_oJBcCnj4dAPb-zv6cK-_Qsb_ANC_sOY</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Wang, Zhu</creator><creator>Woodward, Wayne A.</creator><creator>Gray, Henry L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200909</creationdate><title>The application of the Kalman filter to nonstationary time series through time deformation</title><author>Wang, Zhu ; Woodward, Wayne A. ; Gray, Henry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Econometrics</topic><topic>Frequency</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Nonstationary</topic><topic>Regression analysis</topic><topic>state space</topic><topic>Stationarity</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Time series</topic><topic>time transformation</topic><topic>time-varying frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhu</creatorcontrib><creatorcontrib>Woodward, Wayne A.</creatorcontrib><creatorcontrib>Gray, Henry L.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhu</au><au>Woodward, Wayne A.</au><au>Gray, Henry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of the Kalman filter to nonstationary time series through time deformation</atitle><jtitle>Journal of time series analysis</jtitle><date>2009-09</date><risdate>2009</risdate><volume>30</volume><issue>5</issue><spage>559</spage><epage>574</epage><pages>559-574</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>. An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9892.2009.00628.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-9782 |
ispartof | Journal of time series analysis, 2009-09, Vol.30 (5), p.559-574 |
issn | 0143-9782 1467-9892 |
language | eng |
recordid | cdi_proquest_miscellaneous_37298114 |
source | RePEc; Wiley Online Library Journals Frontfile Complete |
subjects | Econometrics Frequency Kalman filter Kalman filters Mathematical analysis Nonstationary Regression analysis state space Stationarity Statistical methods Studies Time series time transformation time-varying frequencies |
title | The application of the Kalman filter to nonstationary time series through time deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20the%20Kalman%20filter%20to%20nonstationary%20time%20series%20through%20time%20deformation&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Wang,%20Zhu&rft.date=2009-09&rft.volume=30&rft.issue=5&rft.spage=559&rft.epage=574&rft.pages=559-574&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/j.1467-9892.2009.00628.x&rft_dat=%3Cproquest_cross%3E37298114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751536532&rft_id=info:pmid/&rfr_iscdi=true |