The application of the Kalman filter to nonstationary time series through time deformation

.  An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2009-09, Vol.30 (5), p.559-574
Hauptverfasser: Wang, Zhu, Woodward, Wayne A., Gray, Henry L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 5
container_start_page 559
container_title Journal of time series analysis
container_volume 30
creator Wang, Zhu
Woodward, Wayne A.
Gray, Henry L.
description .  An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.
doi_str_mv 10.1111/j.1467-9892.2009.00628.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37298114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37298114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</originalsourceid><addsrcrecordid>eNqNkMGO0zAQhi0EEqXwDhEHbil2HMf2gcNqBQtlBYctu4jLyEkm1CGJg51C-_Y4DeqBE5bGY43_bzTzE5IwumHxvG43LC9kqpXONhmlekNpkanN8RFZXT4ekxVlOU-1VNlT8iyEllJW5JKtyLfdHhMzjp2tzGTdkLgmmWLpo-l6MySN7Sb0yeSSwQ1hOkuMPyWT7TEJ6C2GKPfu8H2_1GpsnO_PuufkSWO6gC_-5jX58u7t7vp9evv55sP11W1aiaxQacUFyxvOuZC6EbLOc2F0rbSpRZmbMmMlV40wAisu87KmCrEsRYaNKXNUHPmavFr6jt79PGCYoLehwq4zA7pDAC4zrVjcf01e_iNs3cEPcTaQggleCJ5FkVpElXcheGxg9LaPOwOjMDsOLczGwmwszI7D2XE4RnS7oB5HrC5c2Zl2il4Z-AXccBqvU4wzyo2NIWKMcxYahMxhP_Wx2Zul2W_b4em_h4Dt7u4qviKfLrwNEx4vvPE_oJBcCnj4dAPb-zv6cK-_Qsb_ANC_sOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751536532</pqid></control><display><type>article</type><title>The application of the Kalman filter to nonstationary time series through time deformation</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Zhu ; Woodward, Wayne A. ; Gray, Henry L.</creator><creatorcontrib>Wang, Zhu ; Woodward, Wayne A. ; Gray, Henry L.</creatorcontrib><description>.  An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/j.1467-9892.2009.00628.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Econometrics ; Frequency ; Kalman filter ; Kalman filters ; Mathematical analysis ; Nonstationary ; Regression analysis ; state space ; Stationarity ; Statistical methods ; Studies ; Time series ; time transformation ; time-varying frequencies</subject><ispartof>Journal of time series analysis, 2009-09, Vol.30 (5), p.559-574</ispartof><rights>2009 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</citedby><cites>FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9892.2009.00628.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9892.2009.00628.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3994,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajtsera/v_3a30_3ay_3a2009_3ai_3a5_3ap_3a559-574.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhu</creatorcontrib><creatorcontrib>Woodward, Wayne A.</creatorcontrib><creatorcontrib>Gray, Henry L.</creatorcontrib><title>The application of the Kalman filter to nonstationary time series through time deformation</title><title>Journal of time series analysis</title><description>.  An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.</description><subject>Econometrics</subject><subject>Frequency</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Nonstationary</subject><subject>Regression analysis</subject><subject>state space</subject><subject>Stationarity</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Time series</subject><subject>time transformation</subject><subject>time-varying frequencies</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkMGO0zAQhi0EEqXwDhEHbil2HMf2gcNqBQtlBYctu4jLyEkm1CGJg51C-_Y4DeqBE5bGY43_bzTzE5IwumHxvG43LC9kqpXONhmlekNpkanN8RFZXT4ekxVlOU-1VNlT8iyEllJW5JKtyLfdHhMzjp2tzGTdkLgmmWLpo-l6MySN7Sb0yeSSwQ1hOkuMPyWT7TEJ6C2GKPfu8H2_1GpsnO_PuufkSWO6gC_-5jX58u7t7vp9evv55sP11W1aiaxQacUFyxvOuZC6EbLOc2F0rbSpRZmbMmMlV40wAisu87KmCrEsRYaNKXNUHPmavFr6jt79PGCYoLehwq4zA7pDAC4zrVjcf01e_iNs3cEPcTaQggleCJ5FkVpElXcheGxg9LaPOwOjMDsOLczGwmwszI7D2XE4RnS7oB5HrC5c2Zl2il4Z-AXccBqvU4wzyo2NIWKMcxYahMxhP_Wx2Zul2W_b4em_h4Dt7u4qviKfLrwNEx4vvPE_oJBcCnj4dAPb-zv6cK-_Qsb_ANC_sOY</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Wang, Zhu</creator><creator>Woodward, Wayne A.</creator><creator>Gray, Henry L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200909</creationdate><title>The application of the Kalman filter to nonstationary time series through time deformation</title><author>Wang, Zhu ; Woodward, Wayne A. ; Gray, Henry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5268-c3514f333579f57d445a9d89ad5b4ab21b38f5a5ec374bd08eebb52efab4e83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Econometrics</topic><topic>Frequency</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Nonstationary</topic><topic>Regression analysis</topic><topic>state space</topic><topic>Stationarity</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Time series</topic><topic>time transformation</topic><topic>time-varying frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhu</creatorcontrib><creatorcontrib>Woodward, Wayne A.</creatorcontrib><creatorcontrib>Gray, Henry L.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhu</au><au>Woodward, Wayne A.</au><au>Gray, Henry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of the Kalman filter to nonstationary time series through time deformation</atitle><jtitle>Journal of time series analysis</jtitle><date>2009-09</date><risdate>2009</risdate><volume>30</volume><issue>5</issue><spage>559</spage><epage>574</epage><pages>559-574</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>.  An increasingly valuable tool for modelling a nonstationary time series, X(t), is time deformation. In this procedure time, t, is transformed to a ‘time’ scale, u = g(t), on which the process Y(u) = X(g(t)) is stationary. However, since the time scale is transformed, equally spaced data on the original time scale data become unequally spaced data in transformed time. In practice interpolation in the original time scale is currently used to obtain equally spaced data in transformed time which can then be modelled using the classical autoregressive moving average modelling techniques. In this article, the need for interpolation is eliminated by employing the continuous time autoregressive model and estimating the parameters using the Kalman filter. The resulting improvements include more accurate estimation of the spectrum, and the separation of the data into its time‐varying latent components. The technique is applied to simulated and real data for illustrations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9892.2009.00628.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2009-09, Vol.30 (5), p.559-574
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_miscellaneous_37298114
source RePEc; Wiley Online Library Journals Frontfile Complete
subjects Econometrics
Frequency
Kalman filter
Kalman filters
Mathematical analysis
Nonstationary
Regression analysis
state space
Stationarity
Statistical methods
Studies
Time series
time transformation
time-varying frequencies
title The application of the Kalman filter to nonstationary time series through time deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20the%20Kalman%20filter%20to%20nonstationary%20time%20series%20through%20time%20deformation&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Wang,%20Zhu&rft.date=2009-09&rft.volume=30&rft.issue=5&rft.spage=559&rft.epage=574&rft.pages=559-574&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/j.1467-9892.2009.00628.x&rft_dat=%3Cproquest_cross%3E37298114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751536532&rft_id=info:pmid/&rfr_iscdi=true