Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data
In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2009-09, Vol.104 (487), p.886-898 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 487 |
container_start_page | 886 |
container_title | Journal of the American Statistical Association |
container_volume | 104 |
creator | Huang, Lan Tiwari, Ram C. Zou, Zhaohui Kulldorff, Martin Feuer, Eric J. |
description | In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org). |
doi_str_mv | 10.1198/jasa.2009.ap07613 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37297584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40592262</jstor_id><sourcerecordid>40592262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVJoE7aH9BDYSkkt3X1tfo4lnw5EJJCWtqbGMuz7pr1aiPJh_77aGPjQ-YyDPPM8PIQ8oXROWPWfN9Agjmn1M5hpFox8YHMWCN0zbX8e0JmlCleM9nYj-QspQ0tpY2ZkcUf7Nb_Mq6qxxC30FfPI-Ru6h6G6jmXIeXOV22I1QIzxrDGAcMuVT_DuOvLOgzVNWT4RE5b6BN-PvRz8vv25tfVon54uru_-vFQe2lkrkskiUKstLeWwYobkNZzhZYLhdQuuVHKIwIyzVohpWXce2t8w8wSV6jFObnc_x1jeNlhym7bJY99D2-xnNDc6sbIAn57B27CLg4lmytODKWKqQKxPeRjSCli68bYbSH-d4y6SaybxLpJrDuILTcXh8eQPPRthMF36XjIOWVS8inA1z23STnE417SxnKuuHgF7RWC2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274800616</pqid></control><display><type>article</type><title>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Taylor & Francis</source><creator>Huang, Lan ; Tiwari, Ram C. ; Zou, Zhaohui ; Kulldorff, Martin ; Feuer, Eric J.</creator><creatorcontrib>Huang, Lan ; Tiwari, Ram C. ; Zou, Zhaohui ; Kulldorff, Martin ; Feuer, Eric J.</creatorcontrib><description>In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/jasa.2009.ap07613</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: American Statistical Association</publisher><subject>Applications ; Applications and Case Studies ; Biology, psychology, social sciences ; Breast cancer ; Cancer ; Censuses ; Cluster analysis ; Datasets ; Epidemiology ; Exact sciences and technology ; General topics ; Lung cancer ; Lung neoplasms ; Mathematics ; Medical research ; Medical sciences ; Mortality ; Multivariate analysis ; New technology ; Probability and statistics ; Sample size ; Sciences and techniques of general use ; Statistical discrepancies ; Statistical methods ; Statistics ; Survival analysis ; Survival rates</subject><ispartof>Journal of the American Statistical Association, 2009-09, Vol.104 (487), p.886-898</ispartof><rights>2009 American Statistical Association</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</citedby><cites>FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40592262$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40592262$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22014424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Tiwari, Ram C.</creatorcontrib><creatorcontrib>Zou, Zhaohui</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><creatorcontrib>Feuer, Eric J.</creatorcontrib><title>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</title><title>Journal of the American Statistical Association</title><description>In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).</description><subject>Applications</subject><subject>Applications and Case Studies</subject><subject>Biology, psychology, social sciences</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Censuses</subject><subject>Cluster analysis</subject><subject>Datasets</subject><subject>Epidemiology</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Lung cancer</subject><subject>Lung neoplasms</subject><subject>Mathematics</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Mortality</subject><subject>Multivariate analysis</subject><subject>New technology</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical discrepancies</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Survival analysis</subject><subject>Survival rates</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVJoE7aH9BDYSkkt3X1tfo4lnw5EJJCWtqbGMuz7pr1aiPJh_77aGPjQ-YyDPPM8PIQ8oXROWPWfN9Agjmn1M5hpFox8YHMWCN0zbX8e0JmlCleM9nYj-QspQ0tpY2ZkcUf7Nb_Mq6qxxC30FfPI-Ru6h6G6jmXIeXOV22I1QIzxrDGAcMuVT_DuOvLOgzVNWT4RE5b6BN-PvRz8vv25tfVon54uru_-vFQe2lkrkskiUKstLeWwYobkNZzhZYLhdQuuVHKIwIyzVohpWXce2t8w8wSV6jFObnc_x1jeNlhym7bJY99D2-xnNDc6sbIAn57B27CLg4lmytODKWKqQKxPeRjSCli68bYbSH-d4y6SaybxLpJrDuILTcXh8eQPPRthMF36XjIOWVS8inA1z23STnE417SxnKuuHgF7RWC2A</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Huang, Lan</creator><creator>Tiwari, Ram C.</creator><creator>Zou, Zhaohui</creator><creator>Kulldorff, Martin</creator><creator>Feuer, Eric J.</creator><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20090901</creationdate><title>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</title><author>Huang, Lan ; Tiwari, Ram C. ; Zou, Zhaohui ; Kulldorff, Martin ; Feuer, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications</topic><topic>Applications and Case Studies</topic><topic>Biology, psychology, social sciences</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Censuses</topic><topic>Cluster analysis</topic><topic>Datasets</topic><topic>Epidemiology</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Lung cancer</topic><topic>Lung neoplasms</topic><topic>Mathematics</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Mortality</topic><topic>Multivariate analysis</topic><topic>New technology</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical discrepancies</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Survival analysis</topic><topic>Survival rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Tiwari, Ram C.</creatorcontrib><creatorcontrib>Zou, Zhaohui</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><creatorcontrib>Feuer, Eric J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan</au><au>Tiwari, Ram C.</au><au>Zou, Zhaohui</au><au>Kulldorff, Martin</au><au>Feuer, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>104</volume><issue>487</issue><spage>886</spage><epage>898</epage><pages>886-898</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).</abstract><cop>Alexandria, VA</cop><pub>American Statistical Association</pub><doi>10.1198/jasa.2009.ap07613</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2009-09, Vol.104 (487), p.886-898 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_miscellaneous_37297584 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis |
subjects | Applications Applications and Case Studies Biology, psychology, social sciences Breast cancer Cancer Censuses Cluster analysis Datasets Epidemiology Exact sciences and technology General topics Lung cancer Lung neoplasms Mathematics Medical research Medical sciences Mortality Multivariate analysis New technology Probability and statistics Sample size Sciences and techniques of general use Statistical discrepancies Statistical methods Statistics Survival analysis Survival rates |
title | Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Normal%20Spatial%20Scan%20Statistic%20for%20Heterogeneous%20Population%20Data&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Huang,%20Lan&rft.date=2009-09-01&rft.volume=104&rft.issue=487&rft.spage=886&rft.epage=898&rft.pages=886-898&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/jasa.2009.ap07613&rft_dat=%3Cjstor_proqu%3E40592262%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274800616&rft_id=info:pmid/&rft_jstor_id=40592262&rfr_iscdi=true |