Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data

In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2009-09, Vol.104 (487), p.886-898
Hauptverfasser: Huang, Lan, Tiwari, Ram C., Zou, Zhaohui, Kulldorff, Martin, Feuer, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 487
container_start_page 886
container_title Journal of the American Statistical Association
container_volume 104
creator Huang, Lan
Tiwari, Ram C.
Zou, Zhaohui
Kulldorff, Martin
Feuer, Eric J.
description In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).
doi_str_mv 10.1198/jasa.2009.ap07613
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37297584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40592262</jstor_id><sourcerecordid>40592262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVJoE7aH9BDYSkkt3X1tfo4lnw5EJJCWtqbGMuz7pr1aiPJh_77aGPjQ-YyDPPM8PIQ8oXROWPWfN9Agjmn1M5hpFox8YHMWCN0zbX8e0JmlCleM9nYj-QspQ0tpY2ZkcUf7Nb_Mq6qxxC30FfPI-Ru6h6G6jmXIeXOV22I1QIzxrDGAcMuVT_DuOvLOgzVNWT4RE5b6BN-PvRz8vv25tfVon54uru_-vFQe2lkrkskiUKstLeWwYobkNZzhZYLhdQuuVHKIwIyzVohpWXce2t8w8wSV6jFObnc_x1jeNlhym7bJY99D2-xnNDc6sbIAn57B27CLg4lmytODKWKqQKxPeRjSCli68bYbSH-d4y6SaybxLpJrDuILTcXh8eQPPRthMF36XjIOWVS8inA1z23STnE417SxnKuuHgF7RWC2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274800616</pqid></control><display><type>article</type><title>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis</source><creator>Huang, Lan ; Tiwari, Ram C. ; Zou, Zhaohui ; Kulldorff, Martin ; Feuer, Eric J.</creator><creatorcontrib>Huang, Lan ; Tiwari, Ram C. ; Zou, Zhaohui ; Kulldorff, Martin ; Feuer, Eric J.</creatorcontrib><description>In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/jasa.2009.ap07613</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: American Statistical Association</publisher><subject>Applications ; Applications and Case Studies ; Biology, psychology, social sciences ; Breast cancer ; Cancer ; Censuses ; Cluster analysis ; Datasets ; Epidemiology ; Exact sciences and technology ; General topics ; Lung cancer ; Lung neoplasms ; Mathematics ; Medical research ; Medical sciences ; Mortality ; Multivariate analysis ; New technology ; Probability and statistics ; Sample size ; Sciences and techniques of general use ; Statistical discrepancies ; Statistical methods ; Statistics ; Survival analysis ; Survival rates</subject><ispartof>Journal of the American Statistical Association, 2009-09, Vol.104 (487), p.886-898</ispartof><rights>2009 American Statistical Association</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</citedby><cites>FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40592262$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40592262$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22014424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Tiwari, Ram C.</creatorcontrib><creatorcontrib>Zou, Zhaohui</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><creatorcontrib>Feuer, Eric J.</creatorcontrib><title>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</title><title>Journal of the American Statistical Association</title><description>In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).</description><subject>Applications</subject><subject>Applications and Case Studies</subject><subject>Biology, psychology, social sciences</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Censuses</subject><subject>Cluster analysis</subject><subject>Datasets</subject><subject>Epidemiology</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Lung cancer</subject><subject>Lung neoplasms</subject><subject>Mathematics</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Mortality</subject><subject>Multivariate analysis</subject><subject>New technology</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical discrepancies</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Survival analysis</subject><subject>Survival rates</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVJoE7aH9BDYSkkt3X1tfo4lnw5EJJCWtqbGMuz7pr1aiPJh_77aGPjQ-YyDPPM8PIQ8oXROWPWfN9Agjmn1M5hpFox8YHMWCN0zbX8e0JmlCleM9nYj-QspQ0tpY2ZkcUf7Nb_Mq6qxxC30FfPI-Ru6h6G6jmXIeXOV22I1QIzxrDGAcMuVT_DuOvLOgzVNWT4RE5b6BN-PvRz8vv25tfVon54uru_-vFQe2lkrkskiUKstLeWwYobkNZzhZYLhdQuuVHKIwIyzVohpWXce2t8w8wSV6jFObnc_x1jeNlhym7bJY99D2-xnNDc6sbIAn57B27CLg4lmytODKWKqQKxPeRjSCli68bYbSH-d4y6SaybxLpJrDuILTcXh8eQPPRthMF36XjIOWVS8inA1z23STnE417SxnKuuHgF7RWC2A</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Huang, Lan</creator><creator>Tiwari, Ram C.</creator><creator>Zou, Zhaohui</creator><creator>Kulldorff, Martin</creator><creator>Feuer, Eric J.</creator><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20090901</creationdate><title>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</title><author>Huang, Lan ; Tiwari, Ram C. ; Zou, Zhaohui ; Kulldorff, Martin ; Feuer, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-5374e33d7c991ad28a49c26e9236e09b2866ceeae171f344912cc98c518bede73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications</topic><topic>Applications and Case Studies</topic><topic>Biology, psychology, social sciences</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Censuses</topic><topic>Cluster analysis</topic><topic>Datasets</topic><topic>Epidemiology</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Lung cancer</topic><topic>Lung neoplasms</topic><topic>Mathematics</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Mortality</topic><topic>Multivariate analysis</topic><topic>New technology</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical discrepancies</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Survival analysis</topic><topic>Survival rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Tiwari, Ram C.</creatorcontrib><creatorcontrib>Zou, Zhaohui</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><creatorcontrib>Feuer, Eric J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan</au><au>Tiwari, Ram C.</au><au>Zou, Zhaohui</au><au>Kulldorff, Martin</au><au>Feuer, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>104</volume><issue>487</issue><spage>886</spage><epage>898</epage><pages>886-898</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>In geographical spatial epidemiology and disease surveillance, all the existing spatial scan methods for cluster detection using continuous data are designed for evaluating clusters of individuals and analyzing individual-level data. Motivated by growing demands to study the spatial heterogeneity of continuous measures in population data, such as mortality rates, survival rates, average body mass indexes and pollution at state, county, and census tract levels, we propose a weighted normal scan statistic for investigating the clusters of the cells (geographic units such as counties) with unusual high/low continuous regional measures, where the weights reflect the uncertainty of the regional measures or sample size (number of observed cases) in the cells. Power, precision, the effect of the weights, and the sensitivity of the proposed test statistic to data from various distributions are investigated through intensive simulation. The method is applied to 1988-2002 stage I and II lung cancer survival data in Los Angeles County in order to search for clusters of geographic units with high/low survival rates in a short-term/long-term survival after diagnosis, and to 1999–2003 breast cancer age-adjusted mortality rate data in the U.S.collected by the Surveillance, Epidemiology and End Results (SEER) program in order to evaluate the clustering pattern of counties with high mortality rate. The proposed method is included in the latest release of the SaTScan software (www.satscan.org).</abstract><cop>Alexandria, VA</cop><pub>American Statistical Association</pub><doi>10.1198/jasa.2009.ap07613</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2009-09, Vol.104 (487), p.886-898
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_miscellaneous_37297584
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis
subjects Applications
Applications and Case Studies
Biology, psychology, social sciences
Breast cancer
Cancer
Censuses
Cluster analysis
Datasets
Epidemiology
Exact sciences and technology
General topics
Lung cancer
Lung neoplasms
Mathematics
Medical research
Medical sciences
Mortality
Multivariate analysis
New technology
Probability and statistics
Sample size
Sciences and techniques of general use
Statistical discrepancies
Statistical methods
Statistics
Survival analysis
Survival rates
title Weighted Normal Spatial Scan Statistic for Heterogeneous Population Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Normal%20Spatial%20Scan%20Statistic%20for%20Heterogeneous%20Population%20Data&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Huang,%20Lan&rft.date=2009-09-01&rft.volume=104&rft.issue=487&rft.spage=886&rft.epage=898&rft.pages=886-898&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/jasa.2009.ap07613&rft_dat=%3Cjstor_proqu%3E40592262%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274800616&rft_id=info:pmid/&rft_jstor_id=40592262&rfr_iscdi=true