Ambiguity and Second-Order Belief

Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2009-09, Vol.77 (5), p.1575-1605
1. Verfasser: Seo, Kyoungwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 5
container_start_page 1575
container_title Econometrica
container_volume 77
creator Seo, Kyoungwon
description Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.
doi_str_mv 10.3982/ECTA6727
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37283480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25621370</jstor_id><sourcerecordid>25621370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5149-bc3b96d8f3e93adecc32cac8bcbb43a2a3dbbaca44acdca13297cd1800d07ae43</originalsourceid><addsrcrecordid>eNp10F1LwzAUgOEgCs4p-AeEKSjeVJOcNh-Xc2x-IHrhZJfhNEmls2s12dD9e6tTB4IQSCAPL4dDyD6jZ6AVPx8Oxn0hudwgHZYKlVAu-CbpUMp4ooXi22QnximlNGtPhxz2Z3n5tCjnyx7WrvfgbVO75D44H3oXvip9sUu2Cqyi3_u-u-RxNBwPrpLb-8vrQf82sRlLdZJbyLVwqgCvAZ23FrhFq3Kb5ykgR3B5jhbTFK2zyIBraR1TlDoq0afQJSer7ktoXhc-zs2sjNZXFda-WUQDkitIFW3h0R84bRahbmcznIKSIuNZi05XyIYmxuAL8xLKGYalYdR8Lsr8LKqlx989jBarImBty_jrOacZaPo5YLJyb2Xll__2vh5a6NYfrPw0zpuw7mWCM5B03Svj3L___mN4NkKCzMzk7tJMbiYMrkZg7uADgk6Myw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203876525</pqid></control><display><type>article</type><title>Ambiguity and Second-Order Belief</title><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Seo, Kyoungwon</creator><creatorcontrib>Seo, Kyoungwon</creatorcontrib><description>Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ECTA6727</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Ambiguity ; Applications ; Belief &amp; doubt ; Beliefs ; Betting ; Decision theory ; Econometric models ; Economic theory ; Economic utility ; Ellsberg paradox ; Exact sciences and technology ; Expected utility ; Insurance, economics, finance ; Linear transformations ; Lotteries ; Mathematics ; Paradoxes ; Preferences ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; Sciences and techniques of general use ; second-order belief ; Statistics ; Studies ; Topological spaces ; Utility functions ; Utility theory</subject><ispartof>Econometrica, 2009-09, Vol.77 (5), p.1575-1605</ispartof><rights>Copyright 2009 The Econometric Society</rights><rights>2009 The Econometric Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5149-bc3b96d8f3e93adecc32cac8bcbb43a2a3dbbaca44acdca13297cd1800d07ae43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25621370$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25621370$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22053904$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Kyoungwon</creatorcontrib><title>Ambiguity and Second-Order Belief</title><title>Econometrica</title><description>Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.</description><subject>Ambiguity</subject><subject>Applications</subject><subject>Belief &amp; doubt</subject><subject>Beliefs</subject><subject>Betting</subject><subject>Decision theory</subject><subject>Econometric models</subject><subject>Economic theory</subject><subject>Economic utility</subject><subject>Ellsberg paradox</subject><subject>Exact sciences and technology</subject><subject>Expected utility</subject><subject>Insurance, economics, finance</subject><subject>Linear transformations</subject><subject>Lotteries</subject><subject>Mathematics</subject><subject>Paradoxes</subject><subject>Preferences</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>Sciences and techniques of general use</subject><subject>second-order belief</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topological spaces</subject><subject>Utility functions</subject><subject>Utility theory</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUgOEgCs4p-AeEKSjeVJOcNh-Xc2x-IHrhZJfhNEmls2s12dD9e6tTB4IQSCAPL4dDyD6jZ6AVPx8Oxn0hudwgHZYKlVAu-CbpUMp4ooXi22QnximlNGtPhxz2Z3n5tCjnyx7WrvfgbVO75D44H3oXvip9sUu2Cqyi3_u-u-RxNBwPrpLb-8vrQf82sRlLdZJbyLVwqgCvAZ23FrhFq3Kb5ykgR3B5jhbTFK2zyIBraR1TlDoq0afQJSer7ktoXhc-zs2sjNZXFda-WUQDkitIFW3h0R84bRahbmcznIKSIuNZi05XyIYmxuAL8xLKGYalYdR8Lsr8LKqlx989jBarImBty_jrOacZaPo5YLJyb2Xll__2vh5a6NYfrPw0zpuw7mWCM5B03Svj3L___mN4NkKCzMzk7tJMbiYMrkZg7uADgk6Myw</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Seo, Kyoungwon</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200909</creationdate><title>Ambiguity and Second-Order Belief</title><author>Seo, Kyoungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5149-bc3b96d8f3e93adecc32cac8bcbb43a2a3dbbaca44acdca13297cd1800d07ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambiguity</topic><topic>Applications</topic><topic>Belief &amp; doubt</topic><topic>Beliefs</topic><topic>Betting</topic><topic>Decision theory</topic><topic>Econometric models</topic><topic>Economic theory</topic><topic>Economic utility</topic><topic>Ellsberg paradox</topic><topic>Exact sciences and technology</topic><topic>Expected utility</topic><topic>Insurance, economics, finance</topic><topic>Linear transformations</topic><topic>Lotteries</topic><topic>Mathematics</topic><topic>Paradoxes</topic><topic>Preferences</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>Sciences and techniques of general use</topic><topic>second-order belief</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topological spaces</topic><topic>Utility functions</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Kyoungwon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Kyoungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambiguity and Second-Order Belief</atitle><jtitle>Econometrica</jtitle><date>2009-09</date><risdate>2009</risdate><volume>77</volume><issue>5</issue><spage>1575</spage><epage>1605</epage><pages>1575-1605</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.3982/ECTA6727</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2009-09, Vol.77 (5), p.1575-1605
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_37283480
source Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Ambiguity
Applications
Belief & doubt
Beliefs
Betting
Decision theory
Econometric models
Economic theory
Economic utility
Ellsberg paradox
Exact sciences and technology
Expected utility
Insurance, economics, finance
Linear transformations
Lotteries
Mathematics
Paradoxes
Preferences
Probability and statistics
Probability theory and stochastic processes
Probability theory on algebraic and topological structures
Sciences and techniques of general use
second-order belief
Statistics
Studies
Topological spaces
Utility functions
Utility theory
title Ambiguity and Second-Order Belief
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambiguity%20and%20Second-Order%20Belief&rft.jtitle=Econometrica&rft.au=Seo,%20Kyoungwon&rft.date=2009-09&rft.volume=77&rft.issue=5&rft.spage=1575&rft.epage=1605&rft.pages=1575-1605&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.3982/ECTA6727&rft_dat=%3Cjstor_proqu%3E25621370%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203876525&rft_id=info:pmid/&rft_jstor_id=25621370&rfr_iscdi=true