Ambiguity and Second-Order Belief
Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such pr...
Gespeichert in:
Veröffentlicht in: | Econometrica 2009-09, Vol.77 (5), p.1575-1605 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1605 |
---|---|
container_issue | 5 |
container_start_page | 1575 |
container_title | Econometrica |
container_volume | 77 |
creator | Seo, Kyoungwon |
description | Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior. |
doi_str_mv | 10.3982/ECTA6727 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37283480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25621370</jstor_id><sourcerecordid>25621370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5149-bc3b96d8f3e93adecc32cac8bcbb43a2a3dbbaca44acdca13297cd1800d07ae43</originalsourceid><addsrcrecordid>eNp10F1LwzAUgOEgCs4p-AeEKSjeVJOcNh-Xc2x-IHrhZJfhNEmls2s12dD9e6tTB4IQSCAPL4dDyD6jZ6AVPx8Oxn0hudwgHZYKlVAu-CbpUMp4ooXi22QnximlNGtPhxz2Z3n5tCjnyx7WrvfgbVO75D44H3oXvip9sUu2Cqyi3_u-u-RxNBwPrpLb-8vrQf82sRlLdZJbyLVwqgCvAZ23FrhFq3Kb5ykgR3B5jhbTFK2zyIBraR1TlDoq0afQJSer7ktoXhc-zs2sjNZXFda-WUQDkitIFW3h0R84bRahbmcznIKSIuNZi05XyIYmxuAL8xLKGYalYdR8Lsr8LKqlx989jBarImBty_jrOacZaPo5YLJyb2Xll__2vh5a6NYfrPw0zpuw7mWCM5B03Svj3L___mN4NkKCzMzk7tJMbiYMrkZg7uADgk6Myw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203876525</pqid></control><display><type>article</type><title>Ambiguity and Second-Order Belief</title><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Seo, Kyoungwon</creator><creatorcontrib>Seo, Kyoungwon</creatorcontrib><description>Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ECTA6727</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Ambiguity ; Applications ; Belief & doubt ; Beliefs ; Betting ; Decision theory ; Econometric models ; Economic theory ; Economic utility ; Ellsberg paradox ; Exact sciences and technology ; Expected utility ; Insurance, economics, finance ; Linear transformations ; Lotteries ; Mathematics ; Paradoxes ; Preferences ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; Sciences and techniques of general use ; second-order belief ; Statistics ; Studies ; Topological spaces ; Utility functions ; Utility theory</subject><ispartof>Econometrica, 2009-09, Vol.77 (5), p.1575-1605</ispartof><rights>Copyright 2009 The Econometric Society</rights><rights>2009 The Econometric Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5149-bc3b96d8f3e93adecc32cac8bcbb43a2a3dbbaca44acdca13297cd1800d07ae43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25621370$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25621370$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22053904$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Kyoungwon</creatorcontrib><title>Ambiguity and Second-Order Belief</title><title>Econometrica</title><description>Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.</description><subject>Ambiguity</subject><subject>Applications</subject><subject>Belief & doubt</subject><subject>Beliefs</subject><subject>Betting</subject><subject>Decision theory</subject><subject>Econometric models</subject><subject>Economic theory</subject><subject>Economic utility</subject><subject>Ellsberg paradox</subject><subject>Exact sciences and technology</subject><subject>Expected utility</subject><subject>Insurance, economics, finance</subject><subject>Linear transformations</subject><subject>Lotteries</subject><subject>Mathematics</subject><subject>Paradoxes</subject><subject>Preferences</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>Sciences and techniques of general use</subject><subject>second-order belief</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topological spaces</subject><subject>Utility functions</subject><subject>Utility theory</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUgOEgCs4p-AeEKSjeVJOcNh-Xc2x-IHrhZJfhNEmls2s12dD9e6tTB4IQSCAPL4dDyD6jZ6AVPx8Oxn0hudwgHZYKlVAu-CbpUMp4ooXi22QnximlNGtPhxz2Z3n5tCjnyx7WrvfgbVO75D44H3oXvip9sUu2Cqyi3_u-u-RxNBwPrpLb-8vrQf82sRlLdZJbyLVwqgCvAZ23FrhFq3Kb5ykgR3B5jhbTFK2zyIBraR1TlDoq0afQJSer7ktoXhc-zs2sjNZXFda-WUQDkitIFW3h0R84bRahbmcznIKSIuNZi05XyIYmxuAL8xLKGYalYdR8Lsr8LKqlx989jBarImBty_jrOacZaPo5YLJyb2Xll__2vh5a6NYfrPw0zpuw7mWCM5B03Svj3L___mN4NkKCzMzk7tJMbiYMrkZg7uADgk6Myw</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Seo, Kyoungwon</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200909</creationdate><title>Ambiguity and Second-Order Belief</title><author>Seo, Kyoungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5149-bc3b96d8f3e93adecc32cac8bcbb43a2a3dbbaca44acdca13297cd1800d07ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambiguity</topic><topic>Applications</topic><topic>Belief & doubt</topic><topic>Beliefs</topic><topic>Betting</topic><topic>Decision theory</topic><topic>Econometric models</topic><topic>Economic theory</topic><topic>Economic utility</topic><topic>Ellsberg paradox</topic><topic>Exact sciences and technology</topic><topic>Expected utility</topic><topic>Insurance, economics, finance</topic><topic>Linear transformations</topic><topic>Lotteries</topic><topic>Mathematics</topic><topic>Paradoxes</topic><topic>Preferences</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>Sciences and techniques of general use</topic><topic>second-order belief</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topological spaces</topic><topic>Utility functions</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Kyoungwon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Kyoungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambiguity and Second-Order Belief</atitle><jtitle>Econometrica</jtitle><date>2009-09</date><risdate>2009</risdate><volume>77</volume><issue>5</issue><spage>1575</spage><epage>1605</epage><pages>1575-1605</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>Anscombe and Aumann (1963) wrote a classic characterization of subjective expected utility theory. This paper employs the same domain for preference and a closely related (but weaker) set of axioms to characterize preferences that use second-order beliefs (beliefs over probability measures). Such preferences are of interest because they accommodate Ellsberg-type behavior.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.3982/ECTA6727</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 2009-09, Vol.77 (5), p.1575-1605 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_miscellaneous_37283480 |
source | Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Ambiguity Applications Belief & doubt Beliefs Betting Decision theory Econometric models Economic theory Economic utility Ellsberg paradox Exact sciences and technology Expected utility Insurance, economics, finance Linear transformations Lotteries Mathematics Paradoxes Preferences Probability and statistics Probability theory and stochastic processes Probability theory on algebraic and topological structures Sciences and techniques of general use second-order belief Statistics Studies Topological spaces Utility functions Utility theory |
title | Ambiguity and Second-Order Belief |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambiguity%20and%20Second-Order%20Belief&rft.jtitle=Econometrica&rft.au=Seo,%20Kyoungwon&rft.date=2009-09&rft.volume=77&rft.issue=5&rft.spage=1575&rft.epage=1605&rft.pages=1575-1605&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.3982/ECTA6727&rft_dat=%3Cjstor_proqu%3E25621370%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203876525&rft_id=info:pmid/&rft_jstor_id=25621370&rfr_iscdi=true |