On the stability of evolutionary dynamics in games with incomplete information
In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type o...
Gespeichert in:
Veröffentlicht in: | Mathematical social sciences 2009-11, Vol.58 (3), p.310-321 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 3 |
container_start_page | 310 |
container_title | Mathematical social sciences |
container_volume | 58 |
creator | Amann, Erwin Possajennikov, Alex |
description | In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided. |
doi_str_mv | 10.1016/j.mathsocsci.2009.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37229620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489609000778</els_id><sourcerecordid>37229620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</originalsourceid><addsrcrecordid>eNqFkE9vGyEQxVGVSnXSfgdOve2GP2YXjk2UJq2i5tKeEYbZGmt32QB25W_fcR01xxyGAen93gyPEMpZyxnvrnft5Oq2JF98bAVjpmW6ZYy_Iyuue9NIzvUFWaFUNWttug_kspQdY6wXjK_Ij6eZ1i3QUt0mjrEeaRooHNK4rzHNLh9pOM5uir7QONPfboJC_8S6xZdP0zJCBbwOKeMWCHwk7wc3Fvj00q_Ir693P28fmsen-2-3Xx4bv-51bTjvTb8elFIDC0J1qpNaMOddp5UROpjQSyPNJjgBm7VUGoJ2wQ0AzqjeaHlFPp99l5ye91CqnWLxMI5uhrQvVvZCmE4wFOqz0OdUSobBLjlO-C_LmT0FaHf2NUB7CtAybTFARL-f0QwL-P8cACCAenuw0imNxxHrHyldxJJYy6njCCm43dYJzW7OZoCpHCJki-Ng9hBiBl9tSPHtjf4CaoKZKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37229620</pqid></control><display><type>article</type><title>On the stability of evolutionary dynamics in games with incomplete information</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Amann, Erwin ; Possajennikov, Alex</creator><creatorcontrib>Amann, Erwin ; Possajennikov, Alex</creatorcontrib><description>In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/j.mathsocsci.2009.08.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymmetric information ; Dynamic stability ; Economic dynamics ; Evolution ; Evolutionary economics ; Game theory ; Incomplete information games ; Incomplete information games Evolution Replicator dynamic Dynamic stability ; Replicator dynamic ; Replicator dynamics</subject><ispartof>Mathematical social sciences, 2009-11, Vol.58 (3), p.310-321</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</citedby><cites>FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mathsocsci.2009.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a58_3ay_3a2009_3ai_3a3_3ap_3a310-321.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Amann, Erwin</creatorcontrib><creatorcontrib>Possajennikov, Alex</creatorcontrib><title>On the stability of evolutionary dynamics in games with incomplete information</title><title>Mathematical social sciences</title><description>In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.</description><subject>Asymmetric information</subject><subject>Dynamic stability</subject><subject>Economic dynamics</subject><subject>Evolution</subject><subject>Evolutionary economics</subject><subject>Game theory</subject><subject>Incomplete information games</subject><subject>Incomplete information games Evolution Replicator dynamic Dynamic stability</subject><subject>Replicator dynamic</subject><subject>Replicator dynamics</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9vGyEQxVGVSnXSfgdOve2GP2YXjk2UJq2i5tKeEYbZGmt32QB25W_fcR01xxyGAen93gyPEMpZyxnvrnft5Oq2JF98bAVjpmW6ZYy_Iyuue9NIzvUFWaFUNWttug_kspQdY6wXjK_Ij6eZ1i3QUt0mjrEeaRooHNK4rzHNLh9pOM5uir7QONPfboJC_8S6xZdP0zJCBbwOKeMWCHwk7wc3Fvj00q_Ir693P28fmsen-2-3Xx4bv-51bTjvTb8elFIDC0J1qpNaMOddp5UROpjQSyPNJjgBm7VUGoJ2wQ0AzqjeaHlFPp99l5ye91CqnWLxMI5uhrQvVvZCmE4wFOqz0OdUSobBLjlO-C_LmT0FaHf2NUB7CtAybTFARL-f0QwL-P8cACCAenuw0imNxxHrHyldxJJYy6njCCm43dYJzW7OZoCpHCJki-Ng9hBiBl9tSPHtjf4CaoKZKQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Amann, Erwin</creator><creator>Possajennikov, Alex</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20091101</creationdate><title>On the stability of evolutionary dynamics in games with incomplete information</title><author>Amann, Erwin ; Possajennikov, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymmetric information</topic><topic>Dynamic stability</topic><topic>Economic dynamics</topic><topic>Evolution</topic><topic>Evolutionary economics</topic><topic>Game theory</topic><topic>Incomplete information games</topic><topic>Incomplete information games Evolution Replicator dynamic Dynamic stability</topic><topic>Replicator dynamic</topic><topic>Replicator dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amann, Erwin</creatorcontrib><creatorcontrib>Possajennikov, Alex</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amann, Erwin</au><au>Possajennikov, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability of evolutionary dynamics in games with incomplete information</atitle><jtitle>Mathematical social sciences</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>58</volume><issue>3</issue><spage>310</spage><epage>321</epage><pages>310-321</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mathsocsci.2009.08.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-4896 |
ispartof | Mathematical social sciences, 2009-11, Vol.58 (3), p.310-321 |
issn | 0165-4896 1879-3118 |
language | eng |
recordid | cdi_proquest_miscellaneous_37229620 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Asymmetric information Dynamic stability Economic dynamics Evolution Evolutionary economics Game theory Incomplete information games Incomplete information games Evolution Replicator dynamic Dynamic stability Replicator dynamic Replicator dynamics |
title | On the stability of evolutionary dynamics in games with incomplete information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20of%20evolutionary%20dynamics%20in%20games%20with%20incomplete%20information&rft.jtitle=Mathematical%20social%20sciences&rft.au=Amann,%20Erwin&rft.date=2009-11-01&rft.volume=58&rft.issue=3&rft.spage=310&rft.epage=321&rft.pages=310-321&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/j.mathsocsci.2009.08.001&rft_dat=%3Cproquest_cross%3E37229620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37229620&rft_id=info:pmid/&rft_els_id=S0165489609000778&rfr_iscdi=true |