On the stability of evolutionary dynamics in games with incomplete information

In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical social sciences 2009-11, Vol.58 (3), p.310-321
Hauptverfasser: Amann, Erwin, Possajennikov, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 3
container_start_page 310
container_title Mathematical social sciences
container_volume 58
creator Amann, Erwin
Possajennikov, Alex
description In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.
doi_str_mv 10.1016/j.mathsocsci.2009.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37229620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489609000778</els_id><sourcerecordid>37229620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</originalsourceid><addsrcrecordid>eNqFkE9vGyEQxVGVSnXSfgdOve2GP2YXjk2UJq2i5tKeEYbZGmt32QB25W_fcR01xxyGAen93gyPEMpZyxnvrnft5Oq2JF98bAVjpmW6ZYy_Iyuue9NIzvUFWaFUNWttug_kspQdY6wXjK_Ij6eZ1i3QUt0mjrEeaRooHNK4rzHNLh9pOM5uir7QONPfboJC_8S6xZdP0zJCBbwOKeMWCHwk7wc3Fvj00q_Ir693P28fmsen-2-3Xx4bv-51bTjvTb8elFIDC0J1qpNaMOddp5UROpjQSyPNJjgBm7VUGoJ2wQ0AzqjeaHlFPp99l5ye91CqnWLxMI5uhrQvVvZCmE4wFOqz0OdUSobBLjlO-C_LmT0FaHf2NUB7CtAybTFARL-f0QwL-P8cACCAenuw0imNxxHrHyldxJJYy6njCCm43dYJzW7OZoCpHCJki-Ng9hBiBl9tSPHtjf4CaoKZKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37229620</pqid></control><display><type>article</type><title>On the stability of evolutionary dynamics in games with incomplete information</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Amann, Erwin ; Possajennikov, Alex</creator><creatorcontrib>Amann, Erwin ; Possajennikov, Alex</creatorcontrib><description>In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/j.mathsocsci.2009.08.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymmetric information ; Dynamic stability ; Economic dynamics ; Evolution ; Evolutionary economics ; Game theory ; Incomplete information games ; Incomplete information games Evolution Replicator dynamic Dynamic stability ; Replicator dynamic ; Replicator dynamics</subject><ispartof>Mathematical social sciences, 2009-11, Vol.58 (3), p.310-321</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</citedby><cites>FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mathsocsci.2009.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a58_3ay_3a2009_3ai_3a3_3ap_3a310-321.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Amann, Erwin</creatorcontrib><creatorcontrib>Possajennikov, Alex</creatorcontrib><title>On the stability of evolutionary dynamics in games with incomplete information</title><title>Mathematical social sciences</title><description>In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.</description><subject>Asymmetric information</subject><subject>Dynamic stability</subject><subject>Economic dynamics</subject><subject>Evolution</subject><subject>Evolutionary economics</subject><subject>Game theory</subject><subject>Incomplete information games</subject><subject>Incomplete information games Evolution Replicator dynamic Dynamic stability</subject><subject>Replicator dynamic</subject><subject>Replicator dynamics</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9vGyEQxVGVSnXSfgdOve2GP2YXjk2UJq2i5tKeEYbZGmt32QB25W_fcR01xxyGAen93gyPEMpZyxnvrnft5Oq2JF98bAVjpmW6ZYy_Iyuue9NIzvUFWaFUNWttug_kspQdY6wXjK_Ij6eZ1i3QUt0mjrEeaRooHNK4rzHNLh9pOM5uir7QONPfboJC_8S6xZdP0zJCBbwOKeMWCHwk7wc3Fvj00q_Ir693P28fmsen-2-3Xx4bv-51bTjvTb8elFIDC0J1qpNaMOddp5UROpjQSyPNJjgBm7VUGoJ2wQ0AzqjeaHlFPp99l5ye91CqnWLxMI5uhrQvVvZCmE4wFOqz0OdUSobBLjlO-C_LmT0FaHf2NUB7CtAybTFARL-f0QwL-P8cACCAenuw0imNxxHrHyldxJJYy6njCCm43dYJzW7OZoCpHCJki-Ng9hBiBl9tSPHtjf4CaoKZKQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Amann, Erwin</creator><creator>Possajennikov, Alex</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20091101</creationdate><title>On the stability of evolutionary dynamics in games with incomplete information</title><author>Amann, Erwin ; Possajennikov, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-117974f555f0d256563820aca685928d9d73939bda2eb4358ed8adafeea957983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymmetric information</topic><topic>Dynamic stability</topic><topic>Economic dynamics</topic><topic>Evolution</topic><topic>Evolutionary economics</topic><topic>Game theory</topic><topic>Incomplete information games</topic><topic>Incomplete information games Evolution Replicator dynamic Dynamic stability</topic><topic>Replicator dynamic</topic><topic>Replicator dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amann, Erwin</creatorcontrib><creatorcontrib>Possajennikov, Alex</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amann, Erwin</au><au>Possajennikov, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability of evolutionary dynamics in games with incomplete information</atitle><jtitle>Mathematical social sciences</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>58</volume><issue>3</issue><spage>310</spage><epage>321</epage><pages>310-321</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>In an interaction it is possible that one agent has features it is aware of but the opponent is not. These features (e.g. cost, valuation or fighting ability) are referred to as the agent’s type. The paper compares two models of evolution in symmetric situations of this kind. In one model the type of an agent is fixed and evolution works on strategies of types. In the other model every agent adopts with fixed probabilities both types, and type-contingent strategies are exposed to evolution. It is shown that the dynamic stability properties of equilibria may differ even when there are only two types and two strategies. However, in this case the dynamic stability properties are generically the same when the payoff of a player does not depend directly on the type of the opponent. Examples illustrating these results are provided.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mathsocsci.2009.08.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-4896
ispartof Mathematical social sciences, 2009-11, Vol.58 (3), p.310-321
issn 0165-4896
1879-3118
language eng
recordid cdi_proquest_miscellaneous_37229620
source RePEc; Elsevier ScienceDirect Journals
subjects Asymmetric information
Dynamic stability
Economic dynamics
Evolution
Evolutionary economics
Game theory
Incomplete information games
Incomplete information games Evolution Replicator dynamic Dynamic stability
Replicator dynamic
Replicator dynamics
title On the stability of evolutionary dynamics in games with incomplete information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20of%20evolutionary%20dynamics%20in%20games%20with%20incomplete%20information&rft.jtitle=Mathematical%20social%20sciences&rft.au=Amann,%20Erwin&rft.date=2009-11-01&rft.volume=58&rft.issue=3&rft.spage=310&rft.epage=321&rft.pages=310-321&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/j.mathsocsci.2009.08.001&rft_dat=%3Cproquest_cross%3E37229620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37229620&rft_id=info:pmid/&rft_els_id=S0165489609000778&rfr_iscdi=true