Transformations and seasonal adjustment
. We address the problem of seasonal adjustment of a nonlinear transformation of the original time series, measured on a ratio scale, which aims at enforcing two essential features: additivity and orthogonality of the components. The posterior mean and variance of the seasonally adjusted series adm...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 2009-01, Vol.30 (1), p.47-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | . We address the problem of seasonal adjustment of a nonlinear transformation of the original time series, measured on a ratio scale, which aims at enforcing two essential features: additivity and orthogonality of the components. The posterior mean and variance of the seasonally adjusted series admit an analytic finite representation only for particular values of the transformation parameter, e.g. for a fractional Box–Cox transformation parameter. Even if available, the analytical derivation can be tedious and difficult. As an alternative we propose to compute the two conditional moments of the seasonally adjusted series by means of numerical and Monte Carlo integration. The former is both fast and reliable in univariate applications. The latter uses the algorithm known as the ‘simulation smoother’ and it is most useful in multivariate applications. We present two case studies dealing with robust seasonal adjustment under the square root and the fourth root transformation. Our overall conclusion is that robust seasonal adjustment under transformations is feasible from the computational standpoint and that the possibility of transforming the scale ought to be considered as a further option for improving the quality of seasonal adjustment. |
---|---|
ISSN: | 0143-9782 1467-9892 |
DOI: | 10.1111/j.1467-9892.2008.00600.x |