Edgeworth expansions and normalizing transforms for inequality measures

Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrics 2009-05, Vol.150 (1), p.16-29
Hauptverfasser: Schluter, Christian, van Garderen, Kees Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 16
container_title Econometrics
container_volume 150
creator Schluter, Christian
van Garderen, Kees Jan
description Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality measure. We state distribution-free expressions for the bias and skewness coefficients. In the second part we improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These normalizing transforms are designed to eliminate the second-order term in the distributional expansion of the studentized transform and converge to the Gaussian limit at rate O ( n − 1 ) . This leads to improved confidence intervals and applying a subsequent bootstrap leads to a further improvement to order O ( n − 3 / 2 ) . We illustrate our procedure with an application to regional inequality measurement in Côte d’Ivoire.
doi_str_mv 10.1016/j.jeconom.2008.12.022
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_37167727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407609000293</els_id><sourcerecordid>1706630831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-3dc039a1ff7736d8b14a1d4c156f4c3f73aab8eb73984041bde82e9cc971cafb3</originalsourceid><addsrcrecordid>eNqFkU2L3DAMhkNpodNtf0IhFFroIakdJ7ZzKsuyXzDQS3s2jqPsOCR21k6mnf76Vcgwh15qkATSI1niTZKPlOSUUP6tz3sw3vkxLwiROS1yUhSvkh2Vosi4rKvXyY4wUmYlEfxt8i7GnhBSlZLtkvvb9gl--zAfUvgzaRetdzHVrk2dD6Me7F_rntI5YKXDREzRp9bB84K1-ZSOoOMSIL5P3nR6iPDhHK-SX3e3P28esv2P-8eb631mOOFzxlpDWK1p1wnBeCsbWmraloZWvCsN6wTTupHQCFbLkpS0aUEWUBtTC2p017Cr5Os296AHNQU76nBSXlv1cL1Xaw4P4xUl5EiR_bKxU_DPC8RZjTYaGAbtwC9RMUG5EIVA8NM_YO-X4PAORWvOuaxIjVC1QSb4GAN0l-8pUasOqldnHdSqg6KFQh2w73HrCzCBuTQBvg0-KqZpRdCf0LC1xmDXJNq0Rq6KWh3mEWd9Pi-qo9FDh7IYGy8zC1pRzmSF3PeNA5TiaCGoaCw4A60NYGbVevufrV8AzyG52w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196668509</pqid></control><display><type>article</type><title>Edgeworth expansions and normalizing transforms for inequality measures</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Schluter, Christian ; van Garderen, Kees Jan</creator><creatorcontrib>Schluter, Christian ; van Garderen, Kees Jan</creatorcontrib><description>Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality measure. We state distribution-free expressions for the bias and skewness coefficients. In the second part we improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These normalizing transforms are designed to eliminate the second-order term in the distributional expansion of the studentized transform and converge to the Gaussian limit at rate O ( n − 1 ) . This leads to improved confidence intervals and applying a subsequent bootstrap leads to a further improvement to order O ( n − 3 / 2 ) . We illustrate our procedure with an application to regional inequality measurement in Côte d’Ivoire.</description><identifier>ISSN: 0304-4076</identifier><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 1872-6895</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.1016/j.jeconom.2008.12.022</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Asymptotic methods ; Bootstrap method ; Confidence intervals ; Distribution theory ; Entropy ; Exact sciences and technology ; Experimental design ; Generalized Entropy inequality measures ; Generalized Entropy inequality measures Higher- order expansions Normalizing transformations ; Higher- order expansions ; Income inequality ; Inequality ; Insurance, economics, finance ; Macroeconomics ; Mathematics ; Normal distribution ; Normalizing transformations ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistical models ; Statistics ; Studies</subject><ispartof>Econometrics, 2009-05, Vol.150 (1), p.16-29</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. May 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-3dc039a1ff7736d8b14a1d4c156f4c3f73aab8eb73984041bde82e9cc971cafb3</citedby><cites>FETCH-LOGICAL-c606t-3dc039a1ff7736d8b14a1d4c156f4c3f73aab8eb73984041bde82e9cc971cafb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2008.12.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21516385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a150_3ay_3a2009_3ai_3a1_3ap_3a16-29.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00565100$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schluter, Christian</creatorcontrib><creatorcontrib>van Garderen, Kees Jan</creatorcontrib><title>Edgeworth expansions and normalizing transforms for inequality measures</title><title>Econometrics</title><description>Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality measure. We state distribution-free expressions for the bias and skewness coefficients. In the second part we improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These normalizing transforms are designed to eliminate the second-order term in the distributional expansion of the studentized transform and converge to the Gaussian limit at rate O ( n − 1 ) . This leads to improved confidence intervals and applying a subsequent bootstrap leads to a further improvement to order O ( n − 3 / 2 ) . We illustrate our procedure with an application to regional inequality measurement in Côte d’Ivoire.</description><subject>Applications</subject><subject>Asymptotic methods</subject><subject>Bootstrap method</subject><subject>Confidence intervals</subject><subject>Distribution theory</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Generalized Entropy inequality measures</subject><subject>Generalized Entropy inequality measures Higher- order expansions Normalizing transformations</subject><subject>Higher- order expansions</subject><subject>Income inequality</subject><subject>Inequality</subject><subject>Insurance, economics, finance</subject><subject>Macroeconomics</subject><subject>Mathematics</subject><subject>Normal distribution</subject><subject>Normalizing transformations</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Studies</subject><issn>0304-4076</issn><issn>2225-1146</issn><issn>1872-6895</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU2L3DAMhkNpodNtf0IhFFroIakdJ7ZzKsuyXzDQS3s2jqPsOCR21k6mnf76Vcgwh15qkATSI1niTZKPlOSUUP6tz3sw3vkxLwiROS1yUhSvkh2Vosi4rKvXyY4wUmYlEfxt8i7GnhBSlZLtkvvb9gl--zAfUvgzaRetdzHVrk2dD6Me7F_rntI5YKXDREzRp9bB84K1-ZSOoOMSIL5P3nR6iPDhHK-SX3e3P28esv2P-8eb631mOOFzxlpDWK1p1wnBeCsbWmraloZWvCsN6wTTupHQCFbLkpS0aUEWUBtTC2p017Cr5Os296AHNQU76nBSXlv1cL1Xaw4P4xUl5EiR_bKxU_DPC8RZjTYaGAbtwC9RMUG5EIVA8NM_YO-X4PAORWvOuaxIjVC1QSb4GAN0l-8pUasOqldnHdSqg6KFQh2w73HrCzCBuTQBvg0-KqZpRdCf0LC1xmDXJNq0Rq6KWh3mEWd9Pi-qo9FDh7IYGy8zC1pRzmSF3PeNA5TiaCGoaCw4A60NYGbVevufrV8AzyG52w</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Schluter, Christian</creator><creator>van Garderen, Kees Jan</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><general>MDPI</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090501</creationdate><title>Edgeworth expansions and normalizing transforms for inequality measures</title><author>Schluter, Christian ; van Garderen, Kees Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-3dc039a1ff7736d8b14a1d4c156f4c3f73aab8eb73984041bde82e9cc971cafb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications</topic><topic>Asymptotic methods</topic><topic>Bootstrap method</topic><topic>Confidence intervals</topic><topic>Distribution theory</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Generalized Entropy inequality measures</topic><topic>Generalized Entropy inequality measures Higher- order expansions Normalizing transformations</topic><topic>Higher- order expansions</topic><topic>Income inequality</topic><topic>Inequality</topic><topic>Insurance, economics, finance</topic><topic>Macroeconomics</topic><topic>Mathematics</topic><topic>Normal distribution</topic><topic>Normalizing transformations</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schluter, Christian</creatorcontrib><creatorcontrib>van Garderen, Kees Jan</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schluter, Christian</au><au>van Garderen, Kees Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edgeworth expansions and normalizing transforms for inequality measures</atitle><jtitle>Econometrics</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>150</volume><issue>1</issue><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>0304-4076</issn><issn>2225-1146</issn><eissn>1872-6895</eissn><eissn>2225-1146</eissn><coden>JECMB6</coden><abstract>Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality measure. We state distribution-free expressions for the bias and skewness coefficients. In the second part we improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These normalizing transforms are designed to eliminate the second-order term in the distributional expansion of the studentized transform and converge to the Gaussian limit at rate O ( n − 1 ) . This leads to improved confidence intervals and applying a subsequent bootstrap leads to a further improvement to order O ( n − 3 / 2 ) . We illustrate our procedure with an application to regional inequality measurement in Côte d’Ivoire.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2008.12.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Econometrics, 2009-05, Vol.150 (1), p.16-29
issn 0304-4076
2225-1146
1872-6895
2225-1146
language eng
recordid cdi_proquest_miscellaneous_37167727
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applications
Asymptotic methods
Bootstrap method
Confidence intervals
Distribution theory
Entropy
Exact sciences and technology
Experimental design
Generalized Entropy inequality measures
Generalized Entropy inequality measures Higher- order expansions Normalizing transformations
Higher- order expansions
Income inequality
Inequality
Insurance, economics, finance
Macroeconomics
Mathematics
Normal distribution
Normalizing transformations
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistical models
Statistics
Studies
title Edgeworth expansions and normalizing transforms for inequality measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edgeworth%20expansions%20and%20normalizing%20transforms%20for%20inequality%20measures&rft.jtitle=Econometrics&rft.au=Schluter,%20Christian&rft.date=2009-05-01&rft.volume=150&rft.issue=1&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2008.12.022&rft_dat=%3Cproquest_hal_p%3E1706630831%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196668509&rft_id=info:pmid/&rft_els_id=S0304407609000293&rfr_iscdi=true