Local asymptotic normality and efficient estimation for INAR(p) models

.  Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2008-09, Vol.29 (5), p.783-801
Hauptverfasser: Drost, Feike C., Van Den Akker, Ramon, Werker, Bas J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 5
container_start_page 783
container_title Journal of time series analysis
container_volume 29
creator Drost, Feike C.
Van Den Akker, Ramon
Werker, Bas J. M.
description .  Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.
doi_str_mv 10.1111/j.1467-9892.2008.00581.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37102042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37102042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</originalsourceid><addsrcrecordid>eNqNkF2L1DAUhosoOK7-h-KF6EVrvtokF14Mi7PuMKyLOyJ4c0jTBFP7ZdLR6b83tTIXXhl4cw7kfQ4nb5KkGOU4nrdNjlnJMykkyQlCIkeoEDg_P0o2l4fHyQZhRjPJBXmaPAuhQQiXjONNsjsMWrWpCnM3TsPkdNoPvlOtm-ZU9XVqrHXamX5KTZhcpyY39KkdfHp7t_30enyTdkNt2vA8eWJVG8yLv_Uq-bx7f7z-kB0-3txebw-ZLiTBWa0JUzVTUtqyKAohOBVWmpJyS6SWRFW8opWhktpaY0sYU8pYhg1ivFK6oFfJq3Xu6Icfp7gSdC5o07aqN8MpAOUYEcRINL78x9gMJ9_H3YAgIimWhEWTWE3aDyF4Y2H08Y9-BoxgSRcaWEKEJURY0oU_6cI5ovsV9WY0-sJVrWqmYLyCn0AVkfGal2ZBqXJRRdQYxQUFgTB8m7o47N067JdrzfzfS8D--LCNXeSzlXdhMucLr_x3KDnlBXy5u4Gv7OG4u7_fw5H-BjvEqHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>202931924</pqid></control><display><type>article</type><title>Local asymptotic normality and efficient estimation for INAR(p) models</title><source>RePEc</source><source>Wiley Online Library All Journals</source><creator>Drost, Feike C. ; Van Den Akker, Ramon ; Werker, Bas J. M.</creator><creatorcontrib>Drost, Feike C. ; Van Den Akker, Ramon ; Werker, Bas J. M.</creatorcontrib><description>.  Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/j.1467-9892.2008.00581.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Count data ; Distribution ; Econometric models ; Econometrics ; Estimating techniques ; Estimation ; Immigration ; INAR models ; information loss structure ; integer-valued time series ; Mathematical analysis ; Probability distribution ; Statistical methods ; Studies ; Time series</subject><ispartof>Journal of time series analysis, 2008-09, Vol.29 (5), p.783-801</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2008 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</citedby><cites>FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9892.2008.00581.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9892.2008.00581.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4006,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajtsera/v_3a29_3ay_3a2008_3ai_3a5_3ap_3a783-801.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Drost, Feike C.</creatorcontrib><creatorcontrib>Van Den Akker, Ramon</creatorcontrib><creatorcontrib>Werker, Bas J. M.</creatorcontrib><title>Local asymptotic normality and efficient estimation for INAR(p) models</title><title>Journal of time series analysis</title><description>.  Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.</description><subject>Count data</subject><subject>Distribution</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Immigration</subject><subject>INAR models</subject><subject>information loss structure</subject><subject>integer-valued time series</subject><subject>Mathematical analysis</subject><subject>Probability distribution</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkF2L1DAUhosoOK7-h-KF6EVrvtokF14Mi7PuMKyLOyJ4c0jTBFP7ZdLR6b83tTIXXhl4cw7kfQ4nb5KkGOU4nrdNjlnJMykkyQlCIkeoEDg_P0o2l4fHyQZhRjPJBXmaPAuhQQiXjONNsjsMWrWpCnM3TsPkdNoPvlOtm-ZU9XVqrHXamX5KTZhcpyY39KkdfHp7t_30enyTdkNt2vA8eWJVG8yLv_Uq-bx7f7z-kB0-3txebw-ZLiTBWa0JUzVTUtqyKAohOBVWmpJyS6SWRFW8opWhktpaY0sYU8pYhg1ivFK6oFfJq3Xu6Icfp7gSdC5o07aqN8MpAOUYEcRINL78x9gMJ9_H3YAgIimWhEWTWE3aDyF4Y2H08Y9-BoxgSRcaWEKEJURY0oU_6cI5ovsV9WY0-sJVrWqmYLyCn0AVkfGal2ZBqXJRRdQYxQUFgTB8m7o47N067JdrzfzfS8D--LCNXeSzlXdhMucLr_x3KDnlBXy5u4Gv7OG4u7_fw5H-BjvEqHk</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Drost, Feike C.</creator><creator>Van Den Akker, Ramon</creator><creator>Werker, Bas J. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200809</creationdate><title>Local asymptotic normality and efficient estimation for INAR(p) models</title><author>Drost, Feike C. ; Van Den Akker, Ramon ; Werker, Bas J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Count data</topic><topic>Distribution</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Immigration</topic><topic>INAR models</topic><topic>information loss structure</topic><topic>integer-valued time series</topic><topic>Mathematical analysis</topic><topic>Probability distribution</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drost, Feike C.</creatorcontrib><creatorcontrib>Van Den Akker, Ramon</creatorcontrib><creatorcontrib>Werker, Bas J. M.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drost, Feike C.</au><au>Van Den Akker, Ramon</au><au>Werker, Bas J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local asymptotic normality and efficient estimation for INAR(p) models</atitle><jtitle>Journal of time series analysis</jtitle><date>2008-09</date><risdate>2008</risdate><volume>29</volume><issue>5</issue><spage>783</spage><epage>801</epage><pages>783-801</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>.  Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9892.2008.00581.x</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2008-09, Vol.29 (5), p.783-801
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_miscellaneous_37102042
source RePEc; Wiley Online Library All Journals
subjects Count data
Distribution
Econometric models
Econometrics
Estimating techniques
Estimation
Immigration
INAR models
information loss structure
integer-valued time series
Mathematical analysis
Probability distribution
Statistical methods
Studies
Time series
title Local asymptotic normality and efficient estimation for INAR(p) models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20asymptotic%20normality%20and%20efficient%20estimation%20for%20INAR(p)%20models&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Drost,%20Feike%20C.&rft.date=2008-09&rft.volume=29&rft.issue=5&rft.spage=783&rft.epage=801&rft.pages=783-801&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/j.1467-9892.2008.00581.x&rft_dat=%3Cproquest_cross%3E37102042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=202931924&rft_id=info:pmid/&rfr_iscdi=true