Local asymptotic normality and efficient estimation for INAR(p) models
. Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative int...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 2008-09, Vol.29 (5), p.783-801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 801 |
---|---|
container_issue | 5 |
container_start_page | 783 |
container_title | Journal of time series analysis |
container_volume | 29 |
creator | Drost, Feike C. Van Den Akker, Ramon Werker, Bas J. M. |
description | . Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property. |
doi_str_mv | 10.1111/j.1467-9892.2008.00581.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37102042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37102042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</originalsourceid><addsrcrecordid>eNqNkF2L1DAUhosoOK7-h-KF6EVrvtokF14Mi7PuMKyLOyJ4c0jTBFP7ZdLR6b83tTIXXhl4cw7kfQ4nb5KkGOU4nrdNjlnJMykkyQlCIkeoEDg_P0o2l4fHyQZhRjPJBXmaPAuhQQiXjONNsjsMWrWpCnM3TsPkdNoPvlOtm-ZU9XVqrHXamX5KTZhcpyY39KkdfHp7t_30enyTdkNt2vA8eWJVG8yLv_Uq-bx7f7z-kB0-3txebw-ZLiTBWa0JUzVTUtqyKAohOBVWmpJyS6SWRFW8opWhktpaY0sYU8pYhg1ivFK6oFfJq3Xu6Icfp7gSdC5o07aqN8MpAOUYEcRINL78x9gMJ9_H3YAgIimWhEWTWE3aDyF4Y2H08Y9-BoxgSRcaWEKEJURY0oU_6cI5ovsV9WY0-sJVrWqmYLyCn0AVkfGal2ZBqXJRRdQYxQUFgTB8m7o47N067JdrzfzfS8D--LCNXeSzlXdhMucLr_x3KDnlBXy5u4Gv7OG4u7_fw5H-BjvEqHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>202931924</pqid></control><display><type>article</type><title>Local asymptotic normality and efficient estimation for INAR(p) models</title><source>RePEc</source><source>Wiley Online Library All Journals</source><creator>Drost, Feike C. ; Van Den Akker, Ramon ; Werker, Bas J. M.</creator><creatorcontrib>Drost, Feike C. ; Van Den Akker, Ramon ; Werker, Bas J. M.</creatorcontrib><description>. Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/j.1467-9892.2008.00581.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Count data ; Distribution ; Econometric models ; Econometrics ; Estimating techniques ; Estimation ; Immigration ; INAR models ; information loss structure ; integer-valued time series ; Mathematical analysis ; Probability distribution ; Statistical methods ; Studies ; Time series</subject><ispartof>Journal of time series analysis, 2008-09, Vol.29 (5), p.783-801</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2008 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</citedby><cites>FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9892.2008.00581.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9892.2008.00581.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4006,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajtsera/v_3a29_3ay_3a2008_3ai_3a5_3ap_3a783-801.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Drost, Feike C.</creatorcontrib><creatorcontrib>Van Den Akker, Ramon</creatorcontrib><creatorcontrib>Werker, Bas J. M.</creatorcontrib><title>Local asymptotic normality and efficient estimation for INAR(p) models</title><title>Journal of time series analysis</title><description>. Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.</description><subject>Count data</subject><subject>Distribution</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Immigration</subject><subject>INAR models</subject><subject>information loss structure</subject><subject>integer-valued time series</subject><subject>Mathematical analysis</subject><subject>Probability distribution</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkF2L1DAUhosoOK7-h-KF6EVrvtokF14Mi7PuMKyLOyJ4c0jTBFP7ZdLR6b83tTIXXhl4cw7kfQ4nb5KkGOU4nrdNjlnJMykkyQlCIkeoEDg_P0o2l4fHyQZhRjPJBXmaPAuhQQiXjONNsjsMWrWpCnM3TsPkdNoPvlOtm-ZU9XVqrHXamX5KTZhcpyY39KkdfHp7t_30enyTdkNt2vA8eWJVG8yLv_Uq-bx7f7z-kB0-3txebw-ZLiTBWa0JUzVTUtqyKAohOBVWmpJyS6SWRFW8opWhktpaY0sYU8pYhg1ivFK6oFfJq3Xu6Icfp7gSdC5o07aqN8MpAOUYEcRINL78x9gMJ9_H3YAgIimWhEWTWE3aDyF4Y2H08Y9-BoxgSRcaWEKEJURY0oU_6cI5ovsV9WY0-sJVrWqmYLyCn0AVkfGal2ZBqXJRRdQYxQUFgTB8m7o47N067JdrzfzfS8D--LCNXeSzlXdhMucLr_x3KDnlBXy5u4Gv7OG4u7_fw5H-BjvEqHk</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Drost, Feike C.</creator><creator>Van Den Akker, Ramon</creator><creator>Werker, Bas J. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200809</creationdate><title>Local asymptotic normality and efficient estimation for INAR(p) models</title><author>Drost, Feike C. ; Van Den Akker, Ramon ; Werker, Bas J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5921-dc24ad4a99f655588738f9e637f29c92ab7b3be393fdc1f244aaef41e047bac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Count data</topic><topic>Distribution</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Immigration</topic><topic>INAR models</topic><topic>information loss structure</topic><topic>integer-valued time series</topic><topic>Mathematical analysis</topic><topic>Probability distribution</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drost, Feike C.</creatorcontrib><creatorcontrib>Van Den Akker, Ramon</creatorcontrib><creatorcontrib>Werker, Bas J. M.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drost, Feike C.</au><au>Van Den Akker, Ramon</au><au>Werker, Bas J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local asymptotic normality and efficient estimation for INAR(p) models</atitle><jtitle>Journal of time series analysis</jtitle><date>2008-09</date><risdate>2008</risdate><volume>29</volume><issue>5</issue><spage>783</spage><epage>801</epage><pages>783-801</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>. Integer‐valued autoregressive (INAR) processes have been introduced to model non‐negative integer‐valued phenomena that evolve in time. The distribution of an INAR(p) process is determined by two parameters: a vector of survival probabilities and a probability distribution on the non‐negative integers, called an immigration distribution. This paper provides an efficient estimator of the parameters, and in particular, shows that the INAR(p) model has the Local Asymptotic Normality property.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9892.2008.00581.x</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-9782 |
ispartof | Journal of time series analysis, 2008-09, Vol.29 (5), p.783-801 |
issn | 0143-9782 1467-9892 |
language | eng |
recordid | cdi_proquest_miscellaneous_37102042 |
source | RePEc; Wiley Online Library All Journals |
subjects | Count data Distribution Econometric models Econometrics Estimating techniques Estimation Immigration INAR models information loss structure integer-valued time series Mathematical analysis Probability distribution Statistical methods Studies Time series |
title | Local asymptotic normality and efficient estimation for INAR(p) models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20asymptotic%20normality%20and%20efficient%20estimation%20for%20INAR(p)%20models&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Drost,%20Feike%20C.&rft.date=2008-09&rft.volume=29&rft.issue=5&rft.spage=783&rft.epage=801&rft.pages=783-801&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/j.1467-9892.2008.00581.x&rft_dat=%3Cproquest_cross%3E37102042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=202931924&rft_id=info:pmid/&rfr_iscdi=true |