A New Integral for Capacities
A new integral for capacities is introduced and characterized. It differs from the Choquet integral on non-convex capacities. The main feature of the new integral is concavity, which might be interpreted as uncertainty aversion. The integral is extended to fuzzy capacities, which assign subjective e...
Gespeichert in:
Veröffentlicht in: | Economic theory 2009-04, Vol.39 (1), p.157-176 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 1 |
container_start_page | 157 |
container_title | Economic theory |
container_volume | 39 |
creator | Lehrer, Ehud |
description | A new integral for capacities is introduced and characterized. It differs from the Choquet integral on non-convex capacities. The main feature of the new integral is concavity, which might be interpreted as uncertainty aversion. The integral is extended to fuzzy capacities, which assign subjective expected values to random variables (e.g., portfolios) and may assign subjective probability only to a partial set of events. An equivalence between the minimum over sets of additive capacities (not necessarily probability distributions) and the integral w.r.t. fuzzy capacities is demonstrated. The extension to fuzzy capacities enables one to calculate the integral also in cases where the information available is limited to a few events. |
doi_str_mv | 10.1007/s00199-007-0302-z |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37101565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40282985</jstor_id><sourcerecordid>40282985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-b621e5fdfc2124474f50036378bb37d66ba9449d844f0abca0ee709ef1a93c623</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wENh8eAtOvlOjqVYLRS96Dlk06Rs2e7WZIvYX--WFQUPnmYOz_PO8CJ0TeCOAKj7DECMwf2KgQHFhxM0IpxRDFyZUzQCwzSmVJhzdJHzBgCEkHqEJtPiOXwUi6YL6-TqIrapmLmd81VXhXyJzqKrc7j6nmP0Nn94nT3h5cvjYjZdYs8ZdLiUlAQRV9FTQjlXPAoAJpnSZcnUSsrSGc7NSnMewZXeQQgKTIjEGeYlZWN0O-TuUvu-D7mz2yr7UNeuCe0-W6YIECFFD978ATftPjX9b5ZSTpjRUvcQGSCf2pxTiHaXqq1Ln5aAPbZlh7bscT22ZQ-9Qwcn92yzDuk3-D9pMkib3LXp5woHqqnRgn0BlnVz4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224139868</pqid></control><display><type>article</type><title>A New Integral for Capacities</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lehrer, Ehud</creator><creatorcontrib>Lehrer, Ehud</creatorcontrib><description>A new integral for capacities is introduced and characterized. It differs from the Choquet integral on non-convex capacities. The main feature of the new integral is concavity, which might be interpreted as uncertainty aversion. The integral is extended to fuzzy capacities, which assign subjective expected values to random variables (e.g., portfolios) and may assign subjective probability only to a partial set of events. An equivalence between the minimum over sets of additive capacities (not necessarily probability distributions) and the integral w.r.t. fuzzy capacities is demonstrated. The extension to fuzzy capacities enables one to calculate the integral also in cases where the information available is limited to a few events.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-007-0302-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Betting ; Decision making ; Decision theory ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Expected utility ; Expected values ; Game Theory ; Mathematical functions ; Mathematical integrals ; Mathematical minima ; Microeconomics ; Probability ; Probability distribution ; Probability distributions ; Public Finance ; Random variables ; Research Article ; Risk aversion ; Social and Behav. Sciences ; Studies ; Uncertainty</subject><ispartof>Economic theory, 2009-04, Vol.39 (1), p.157-176</ispartof><rights>Copyright 2009 Springer-Verlag Berlin Heidelberg</rights><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-b621e5fdfc2124474f50036378bb37d66ba9449d844f0abca0ee709ef1a93c623</citedby><cites>FETCH-LOGICAL-c430t-b621e5fdfc2124474f50036378bb37d66ba9449d844f0abca0ee709ef1a93c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40282985$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40282985$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Lehrer, Ehud</creatorcontrib><title>A New Integral for Capacities</title><title>Economic theory</title><addtitle>Econ Theory</addtitle><description>A new integral for capacities is introduced and characterized. It differs from the Choquet integral on non-convex capacities. The main feature of the new integral is concavity, which might be interpreted as uncertainty aversion. The integral is extended to fuzzy capacities, which assign subjective expected values to random variables (e.g., portfolios) and may assign subjective probability only to a partial set of events. An equivalence between the minimum over sets of additive capacities (not necessarily probability distributions) and the integral w.r.t. fuzzy capacities is demonstrated. The extension to fuzzy capacities enables one to calculate the integral also in cases where the information available is limited to a few events.</description><subject>Betting</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Expected utility</subject><subject>Expected values</subject><subject>Game Theory</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Mathematical minima</subject><subject>Microeconomics</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Probability distributions</subject><subject>Public Finance</subject><subject>Random variables</subject><subject>Research Article</subject><subject>Risk aversion</subject><subject>Social and Behav. Sciences</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wENh8eAtOvlOjqVYLRS96Dlk06Rs2e7WZIvYX--WFQUPnmYOz_PO8CJ0TeCOAKj7DECMwf2KgQHFhxM0IpxRDFyZUzQCwzSmVJhzdJHzBgCEkHqEJtPiOXwUi6YL6-TqIrapmLmd81VXhXyJzqKrc7j6nmP0Nn94nT3h5cvjYjZdYs8ZdLiUlAQRV9FTQjlXPAoAJpnSZcnUSsrSGc7NSnMewZXeQQgKTIjEGeYlZWN0O-TuUvu-D7mz2yr7UNeuCe0-W6YIECFFD978ATftPjX9b5ZSTpjRUvcQGSCf2pxTiHaXqq1Ln5aAPbZlh7bscT22ZQ-9Qwcn92yzDuk3-D9pMkib3LXp5woHqqnRgn0BlnVz4g</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Lehrer, Ehud</creator><general>Springer</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090401</creationdate><title>A New Integral for Capacities</title><author>Lehrer, Ehud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-b621e5fdfc2124474f50036378bb37d66ba9449d844f0abca0ee709ef1a93c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Betting</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Expected utility</topic><topic>Expected values</topic><topic>Game Theory</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Mathematical minima</topic><topic>Microeconomics</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Probability distributions</topic><topic>Public Finance</topic><topic>Random variables</topic><topic>Research Article</topic><topic>Risk aversion</topic><topic>Social and Behav. Sciences</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehrer, Ehud</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehrer, Ehud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Integral for Capacities</atitle><jtitle>Economic theory</jtitle><stitle>Econ Theory</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>39</volume><issue>1</issue><spage>157</spage><epage>176</epage><pages>157-176</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>A new integral for capacities is introduced and characterized. It differs from the Choquet integral on non-convex capacities. The main feature of the new integral is concavity, which might be interpreted as uncertainty aversion. The integral is extended to fuzzy capacities, which assign subjective expected values to random variables (e.g., portfolios) and may assign subjective probability only to a partial set of events. An equivalence between the minimum over sets of additive capacities (not necessarily probability distributions) and the integral w.r.t. fuzzy capacities is demonstrated. The extension to fuzzy capacities enables one to calculate the integral also in cases where the information available is limited to a few events.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00199-007-0302-z</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-2259 |
ispartof | Economic theory, 2009-04, Vol.39 (1), p.157-176 |
issn | 0938-2259 1432-0479 |
language | eng |
recordid | cdi_proquest_miscellaneous_37101565 |
source | SpringerNature Journals; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Betting Decision making Decision theory Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Expected utility Expected values Game Theory Mathematical functions Mathematical integrals Mathematical minima Microeconomics Probability Probability distribution Probability distributions Public Finance Random variables Research Article Risk aversion Social and Behav. Sciences Studies Uncertainty |
title | A New Integral for Capacities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Integral%20for%20Capacities&rft.jtitle=Economic%20theory&rft.au=Lehrer,%20Ehud&rft.date=2009-04-01&rft.volume=39&rft.issue=1&rft.spage=157&rft.epage=176&rft.pages=157-176&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-007-0302-z&rft_dat=%3Cjstor_proqu%3E40282985%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224139868&rft_id=info:pmid/&rft_jstor_id=40282985&rfr_iscdi=true |