Learning to collude tacitly on production levels by oligopolistic agents

Classical oligopoly theory has strong analytical foundations but is weak in capturing the operating environment of oligopolists and the available knowledge they have for making decisions, areas in which the management literature is relevant. We use agent-based models to simulate the impact on firm p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2009-02, Vol.33 (1), p.47-78
Hauptverfasser: Kimbrough, Steven O, Murphy, Frederic H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 47
container_title Computational economics
container_volume 33
creator Kimbrough, Steven O
Murphy, Frederic H
description Classical oligopoly theory has strong analytical foundations but is weak in capturing the operating environment of oligopolists and the available knowledge they have for making decisions, areas in which the management literature is relevant. We use agent-based models to simulate the impact on firm profitability of policies that oligopolists can pursue when setting production levels. We develop an approach to analyzing simulation results that makes use of nonparametric statistical tests, taking advantage of the large amounts of data generated by simulations, and avoiding the assumption of normality that does not necessarily hold. Our results show that in a quantity game, a simple exploration rule, which we call Probe and Adjust , can find either the Cournot equilibrium or the monopoly solution depending on the measure of success chosen by the firms. These results shed light on how tacit collusion can develop within an oligopoly.
doi_str_mv 10.1007/s10614-008-9150-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37096178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611064011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-2288bce4420f4e64df32f7b666f1cce572fef7a02ef281ebeacd3587beef585d3</originalsourceid><addsrcrecordid>eNp9UE1v1DAUtBCVupT-gHKKOHAL-CP-yBFVlEVaiQucLcd5Xly8SbCdSvvveasgKnHgMM_W08x4PITcMfqeUao_FEYV61pKTdszSVv1guyY1Lzte929JDvac91q2vfX5FUpj5RSyTjfkf0BXJ7idGzq3Pg5pXWEpjofazo389QseR5XXyNeEzxBKs2A-xSP84Kz1Ogbd4SpltfkKrhU4PbPeUO-P3z6dr9vD18_f7n_eGi9FLK2nBszeOg6TkMHqhuD4EEPSqnAvAdMHCBoRzkEbhgM4PwopNEDQJBGjuKGvNt8MdmvFUq1p1g8pOQmmNdiBX5SMW2Q-PYf4uO85gmzWc6k7BTjPZLYRvJ5LiVDsEuOJ5fPllF7KdZuxVos1l6KtQo1-02TYQH_V_DTLX4-XTZPVjghcJwRnNIej4hgiAXRaauN_VFPaMU3q4Iu0xHyc8b_vf9mE41xec5rjGGqF78BQUedlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215546129</pqid></control><display><type>article</type><title>Learning to collude tacitly on production levels by oligopolistic agents</title><source>RePEc</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kimbrough, Steven O ; Murphy, Frederic H</creator><creatorcontrib>Kimbrough, Steven O ; Murphy, Frederic H</creatorcontrib><description>Classical oligopoly theory has strong analytical foundations but is weak in capturing the operating environment of oligopolists and the available knowledge they have for making decisions, areas in which the management literature is relevant. We use agent-based models to simulate the impact on firm profitability of policies that oligopolists can pursue when setting production levels. We develop an approach to analyzing simulation results that makes use of nonparametric statistical tests, taking advantage of the large amounts of data generated by simulations, and avoiding the assumption of normality that does not necessarily hold. Our results show that in a quantity game, a simple exploration rule, which we call Probe and Adjust , can find either the Cournot equilibrium or the monopoly solution depending on the measure of success chosen by the firms. These results shed light on how tacit collusion can develop within an oligopoly.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-008-9150-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Agent-based modeling ; Behavior ; Behavioral/Experimental Economics ; Cognitive psychology ; Collusion ; Competition ; Computer Appl. in Social and Behavioral Sciences ; Cooperation ; Cournot competition ; Decision making ; Duopoly ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Equilibrium ; Experiments ; Game theory ; Games ; Genetic algorithms ; Imperfect competition ; Industrial organization ; Learning in games ; Lernen ; Math Applications in Computer Science ; Mathematical models ; Oligopoly ; Operations Research/Decision Theory ; Output rate ; Production capacity ; Production quantity decision making ; Produktionsplanung und -steuerung ; Public policy ; Simulation ; Students ; Studies ; Theorie ; Wettbewerb</subject><ispartof>Computational economics, 2009-02, Vol.33 (1), p.47-78</ispartof><rights>Springer Science+Business Media, LLC. 2008</rights><rights>Springer Science+Business Media, LLC. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-2288bce4420f4e64df32f7b666f1cce572fef7a02ef281ebeacd3587beef585d3</citedby><cites>FETCH-LOGICAL-c535t-2288bce4420f4e64df32f7b666f1cce572fef7a02ef281ebeacd3587beef585d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-008-9150-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-008-9150-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,3994,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://www.fachportal-paedagogik.de/fis_bildung/suche/fis_set.html?FId=888169$$DAccess content in the German Education Portal$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/kapcompec/v_3a33_3ay_3a2009_3ai_3a1_3ap_3a47-78.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimbrough, Steven O</creatorcontrib><creatorcontrib>Murphy, Frederic H</creatorcontrib><title>Learning to collude tacitly on production levels by oligopolistic agents</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Classical oligopoly theory has strong analytical foundations but is weak in capturing the operating environment of oligopolists and the available knowledge they have for making decisions, areas in which the management literature is relevant. We use agent-based models to simulate the impact on firm profitability of policies that oligopolists can pursue when setting production levels. We develop an approach to analyzing simulation results that makes use of nonparametric statistical tests, taking advantage of the large amounts of data generated by simulations, and avoiding the assumption of normality that does not necessarily hold. Our results show that in a quantity game, a simple exploration rule, which we call Probe and Adjust , can find either the Cournot equilibrium or the monopoly solution depending on the measure of success chosen by the firms. These results shed light on how tacit collusion can develop within an oligopoly.</description><subject>Agent-based modeling</subject><subject>Behavior</subject><subject>Behavioral/Experimental Economics</subject><subject>Cognitive psychology</subject><subject>Collusion</subject><subject>Competition</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Cooperation</subject><subject>Cournot competition</subject><subject>Decision making</subject><subject>Duopoly</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Game theory</subject><subject>Games</subject><subject>Genetic algorithms</subject><subject>Imperfect competition</subject><subject>Industrial organization</subject><subject>Learning in games</subject><subject>Lernen</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Oligopoly</subject><subject>Operations Research/Decision Theory</subject><subject>Output rate</subject><subject>Production capacity</subject><subject>Production quantity decision making</subject><subject>Produktionsplanung und -steuerung</subject><subject>Public policy</subject><subject>Simulation</subject><subject>Students</subject><subject>Studies</subject><subject>Theorie</subject><subject>Wettbewerb</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UE1v1DAUtBCVupT-gHKKOHAL-CP-yBFVlEVaiQucLcd5Xly8SbCdSvvveasgKnHgMM_W08x4PITcMfqeUao_FEYV61pKTdszSVv1guyY1Lzte929JDvac91q2vfX5FUpj5RSyTjfkf0BXJ7idGzq3Pg5pXWEpjofazo389QseR5XXyNeEzxBKs2A-xSP84Kz1Ogbd4SpltfkKrhU4PbPeUO-P3z6dr9vD18_f7n_eGi9FLK2nBszeOg6TkMHqhuD4EEPSqnAvAdMHCBoRzkEbhgM4PwopNEDQJBGjuKGvNt8MdmvFUq1p1g8pOQmmNdiBX5SMW2Q-PYf4uO85gmzWc6k7BTjPZLYRvJ5LiVDsEuOJ5fPllF7KdZuxVos1l6KtQo1-02TYQH_V_DTLX4-XTZPVjghcJwRnNIej4hgiAXRaauN_VFPaMU3q4Iu0xHyc8b_vf9mE41xec5rjGGqF78BQUedlg</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Kimbrough, Steven O</creator><creator>Murphy, Frederic H</creator><general>Springer US</general><general>Society for Computational Economics</general><general>Springer Nature B.V</general><scope>9S6</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090201</creationdate><title>Learning to collude tacitly on production levels by oligopolistic agents</title><author>Kimbrough, Steven O ; Murphy, Frederic H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-2288bce4420f4e64df32f7b666f1cce572fef7a02ef281ebeacd3587beef585d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agent-based modeling</topic><topic>Behavior</topic><topic>Behavioral/Experimental Economics</topic><topic>Cognitive psychology</topic><topic>Collusion</topic><topic>Competition</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Cooperation</topic><topic>Cournot competition</topic><topic>Decision making</topic><topic>Duopoly</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Game theory</topic><topic>Games</topic><topic>Genetic algorithms</topic><topic>Imperfect competition</topic><topic>Industrial organization</topic><topic>Learning in games</topic><topic>Lernen</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Oligopoly</topic><topic>Operations Research/Decision Theory</topic><topic>Output rate</topic><topic>Production capacity</topic><topic>Production quantity decision making</topic><topic>Produktionsplanung und -steuerung</topic><topic>Public policy</topic><topic>Simulation</topic><topic>Students</topic><topic>Studies</topic><topic>Theorie</topic><topic>Wettbewerb</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimbrough, Steven O</creatorcontrib><creatorcontrib>Murphy, Frederic H</creatorcontrib><collection>FIS Bildung Literaturdatenbank</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimbrough, Steven O</au><au>Murphy, Frederic H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to collude tacitly on production levels by oligopolistic agents</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>47</spage><epage>78</epage><pages>47-78</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Classical oligopoly theory has strong analytical foundations but is weak in capturing the operating environment of oligopolists and the available knowledge they have for making decisions, areas in which the management literature is relevant. We use agent-based models to simulate the impact on firm profitability of policies that oligopolists can pursue when setting production levels. We develop an approach to analyzing simulation results that makes use of nonparametric statistical tests, taking advantage of the large amounts of data generated by simulations, and avoiding the assumption of normality that does not necessarily hold. Our results show that in a quantity game, a simple exploration rule, which we call Probe and Adjust , can find either the Cournot equilibrium or the monopoly solution depending on the measure of success chosen by the firms. These results shed light on how tacit collusion can develop within an oligopoly.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10614-008-9150-6</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2009-02, Vol.33 (1), p.47-78
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_miscellaneous_37096178
source RePEc; SpringerLink Journals - AutoHoldings
subjects Agent-based modeling
Behavior
Behavioral/Experimental Economics
Cognitive psychology
Collusion
Competition
Computer Appl. in Social and Behavioral Sciences
Cooperation
Cournot competition
Decision making
Duopoly
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Equilibrium
Experiments
Game theory
Games
Genetic algorithms
Imperfect competition
Industrial organization
Learning in games
Lernen
Math Applications in Computer Science
Mathematical models
Oligopoly
Operations Research/Decision Theory
Output rate
Production capacity
Production quantity decision making
Produktionsplanung und -steuerung
Public policy
Simulation
Students
Studies
Theorie
Wettbewerb
title Learning to collude tacitly on production levels by oligopolistic agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20collude%20tacitly%20on%20production%20levels%20by%20oligopolistic%20agents&rft.jtitle=Computational%20economics&rft.au=Kimbrough,%20Steven%20O&rft.date=2009-02-01&rft.volume=33&rft.issue=1&rft.spage=47&rft.epage=78&rft.pages=47-78&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-008-9150-6&rft_dat=%3Cproquest_cross%3E1611064011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215546129&rft_id=info:pmid/&rfr_iscdi=true