Dimensional Variation Estimation: A Methodological Comparison

Estimation of the dimensional variation of points from data on the distances between pairs of points is a task common to several disciplines, disciplines which include behavioral geography, surveying, and cartography. Three methods for estimating dimensional variation are described and compared usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geographical analysis 1991-01, Vol.23 (1), p.39-55
1. Verfasser: MacKay, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 39
container_title Geographical analysis
container_volume 23
creator MacKay, David B.
description Estimation of the dimensional variation of points from data on the distances between pairs of points is a task common to several disciplines, disciplines which include behavioral geography, surveying, and cartography. Three methods for estimating dimensional variation are described and compared using an experiment involving simulated data and using empirical data from two studies, one based on distance judgments and the other based on direct coordinate judgments. The methods are shown to have different mathematical properties and to result in very different estimates.
doi_str_mv 10.1111/j.1538-4632.1991.tb00220.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37094809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37094809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4580-3ea010257a32d2eab60846c7ca382ba4c875d81a3215c48b915b2046c2df1e3e3</originalsourceid><addsrcrecordid>eNqVkFFLwzAQx4MoOKffoSj61ppL2iYdiIw5pzD1RX0NaZpqS9fMpMPt25u6oeCbebk_3C933A-hU8AR-HdZR5BQHsYpJRFkGURdjjEhOFrvocFPax8NMIY0ZDSlh-jIuRp7igEdoKubaqFbV5lWNsGrtJXsfA6mrqsW33EUjIMH3b2bwjTmrVIem5jF0pPOtMfooJSN0ye7OkQvt9PnyV04f5rdT8bzUMUJxyHVEgMmCZOUFETLPMU8ThVTknKSy1hxlhQcfBcSFfM8gyQn2BOkKEFTTYfoYjt3ac3HSrtOLCqndNPIVpuVE5ThLOY48-DZH7A2K-tvcwIoQJoQRmNPjbaUssY5q0uxtP5cuxGARe9V1KKXJ3p5ovcqdl7F2n8-362QztsorWxV5X4nAMuwP8Rz11vus2r05h8bxGw6fvSJfgEIaotG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311652734</pqid></control><display><type>article</type><title>Dimensional Variation Estimation: A Methodological Comparison</title><source>Periodicals Index Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>MacKay, David B.</creator><creatorcontrib>MacKay, David B.</creatorcontrib><description>Estimation of the dimensional variation of points from data on the distances between pairs of points is a task common to several disciplines, disciplines which include behavioral geography, surveying, and cartography. Three methods for estimating dimensional variation are described and compared using an experiment involving simulated data and using empirical data from two studies, one based on distance judgments and the other based on direct coordinate judgments. The methods are shown to have different mathematical properties and to result in very different estimates.</description><identifier>ISSN: 0016-7363</identifier><identifier>EISSN: 1538-4632</identifier><identifier>DOI: 10.1111/j.1538-4632.1991.tb00220.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bgi / Prodig ; General methodology ; Mathematical techniques and physical analogs</subject><ispartof>Geographical analysis, 1991-01, Vol.23 (1), p.39-55</ispartof><rights>1991 The Ohio State University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4580-3ea010257a32d2eab60846c7ca382ba4c875d81a3215c48b915b2046c2df1e3e3</citedby><cites>FETCH-LOGICAL-c4580-3ea010257a32d2eab60846c7ca382ba4c875d81a3215c48b915b2046c2df1e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27869,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=11790321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MacKay, David B.</creatorcontrib><title>Dimensional Variation Estimation: A Methodological Comparison</title><title>Geographical analysis</title><description>Estimation of the dimensional variation of points from data on the distances between pairs of points is a task common to several disciplines, disciplines which include behavioral geography, surveying, and cartography. Three methods for estimating dimensional variation are described and compared using an experiment involving simulated data and using empirical data from two studies, one based on distance judgments and the other based on direct coordinate judgments. The methods are shown to have different mathematical properties and to result in very different estimates.</description><subject>Bgi / Prodig</subject><subject>General methodology</subject><subject>Mathematical techniques and physical analogs</subject><issn>0016-7363</issn><issn>1538-4632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkFFLwzAQx4MoOKffoSj61ppL2iYdiIw5pzD1RX0NaZpqS9fMpMPt25u6oeCbebk_3C933A-hU8AR-HdZR5BQHsYpJRFkGURdjjEhOFrvocFPax8NMIY0ZDSlh-jIuRp7igEdoKubaqFbV5lWNsGrtJXsfA6mrqsW33EUjIMH3b2bwjTmrVIem5jF0pPOtMfooJSN0ye7OkQvt9PnyV04f5rdT8bzUMUJxyHVEgMmCZOUFETLPMU8ThVTknKSy1hxlhQcfBcSFfM8gyQn2BOkKEFTTYfoYjt3ac3HSrtOLCqndNPIVpuVE5ThLOY48-DZH7A2K-tvcwIoQJoQRmNPjbaUssY5q0uxtP5cuxGARe9V1KKXJ3p5ovcqdl7F2n8-362QztsorWxV5X4nAMuwP8Rz11vus2r05h8bxGw6fvSJfgEIaotG</recordid><startdate>199101</startdate><enddate>199101</enddate><creator>MacKay, David B.</creator><general>Blackwell Publishing Ltd</general><general>Ohio State University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IZSXY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>199101</creationdate><title>Dimensional Variation Estimation: A Methodological Comparison</title><author>MacKay, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4580-3ea010257a32d2eab60846c7ca382ba4c875d81a3215c48b915b2046c2df1e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Bgi / Prodig</topic><topic>General methodology</topic><topic>Mathematical techniques and physical analogs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacKay, David B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 30</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Geographical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacKay, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensional Variation Estimation: A Methodological Comparison</atitle><jtitle>Geographical analysis</jtitle><date>1991-01</date><risdate>1991</risdate><volume>23</volume><issue>1</issue><spage>39</spage><epage>55</epage><pages>39-55</pages><issn>0016-7363</issn><eissn>1538-4632</eissn><abstract>Estimation of the dimensional variation of points from data on the distances between pairs of points is a task common to several disciplines, disciplines which include behavioral geography, surveying, and cartography. Three methods for estimating dimensional variation are described and compared using an experiment involving simulated data and using empirical data from two studies, one based on distance judgments and the other based on direct coordinate judgments. The methods are shown to have different mathematical properties and to result in very different estimates.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1538-4632.1991.tb00220.x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7363
ispartof Geographical analysis, 1991-01, Vol.23 (1), p.39-55
issn 0016-7363
1538-4632
language eng
recordid cdi_proquest_miscellaneous_37094809
source Periodicals Index Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bgi / Prodig
General methodology
Mathematical techniques and physical analogs
title Dimensional Variation Estimation: A Methodological Comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensional%20Variation%20Estimation:%20A%20Methodological%20Comparison&rft.jtitle=Geographical%20analysis&rft.au=MacKay,%20David%20B.&rft.date=1991-01&rft.volume=23&rft.issue=1&rft.spage=39&rft.epage=55&rft.pages=39-55&rft.issn=0016-7363&rft.eissn=1538-4632&rft_id=info:doi/10.1111/j.1538-4632.1991.tb00220.x&rft_dat=%3Cproquest_cross%3E37094809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311652734&rft_id=info:pmid/&rfr_iscdi=true