Parameter estimation for partially observed hypoelliptic diffusions
Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likeli...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2009, Vol.71 (1), p.49-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 71 |
creator | Pokern, Yvo Stuart, Andrew M. Wiberg, Petter |
description | Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data. |
doi_str_mv | 10.1111/j.1467-9868.2008.00689.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37057537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20203877</jstor_id><sourcerecordid>20203877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRBIlMJPQERIcEvwRxI7Bw50oS1SVVCXiuNokrWpQ3Yd7Gy7---ZNNUKcaqlsS3Pe8_PM06SlLOc0_jQ5byoVFbrSueCMZ0zVuk63z1Jjg6Jp7SXVZ2pgovnyYsYO0ajUvIoWXzHgGszmpCaOLo1js5vUutDOmAYHfb9PvVNNOHWrNKb_eBN37thdG26ctZuI6Hjy-SZxT6aVw_rcXJ9-uXH4jy7-Hb2dfHpImsryetMNBy5KoypWGENWolaaaMZExXScVXWttQNaqlbbjlfSYvlqi2aWpiGCaXkcfJ-1h2C_7Mlu7B2sSVDuDF-G0EqVqpSPgIoi6IshSbg2_-And-GDT0CqJa11opPanoGtcHHGIyFIVChwh44g6kH0MFUaphKPfE03PcAdkQ9n6nBDKY98JoeOx9ibOAWJCpO055iupIWRzEdDRRFDUrCzbgmqXcPVjG22NuAm9bFg6RgteKlLAj3ccbdud7sH20VrpbLE9oR__XM7-Lowz_6gkl934Rszrs4mt0hj-E30IdSJfy8PAOhP7PLhdJwRfg3M96iB_wVyPP1UjAuGS9VzYWUfwH9pdRx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200988717</pqid></control><display><type>article</type><title>Parameter estimation for partially observed hypoelliptic diffusions</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pokern, Yvo ; Stuart, Andrew M. ; Wiberg, Petter</creator><creatorcontrib>Pokern, Yvo ; Stuart, Andrew M. ; Wiberg, Petter</creatorcontrib><description>Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2008.00689.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Algebra ; Approximation ; Audiovisual methods ; Diffusion coefficient ; Estimation ; Estimators ; Exact sciences and technology ; General topics ; Gibbs sampler ; Hypoelliptic diffusion ; Linear and multilinear algebra, matrix theory ; Markov processes ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Missing data ; Modeling ; Molecular dynamics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Numerical methods ; Observation ; Parameter estimation ; Parametric models ; Partial observation ; Probability and statistics ; Probability theory and stochastic processes ; Quantitative analysis ; Sampling ; Sciences and techniques of general use ; Signalling ; Standard deviation ; Statistical methods ; Statistics ; Studies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2009, Vol.71 (1), p.49-73</ispartof><rights>Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2009 Royal Statistical Society</rights><rights>2009 INIST-CNRS</rights><rights>2009 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</citedby><cites>FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20203877$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20203877$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3993,4009,27902,27903,27904,45553,45554,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20971534$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a71_3ay_3a2009_3ai_3a1_3ap_3a49-73.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Pokern, Yvo</creatorcontrib><creatorcontrib>Stuart, Andrew M.</creatorcontrib><creatorcontrib>Wiberg, Petter</creatorcontrib><title>Parameter estimation for partially observed hypoelliptic diffusions</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Audiovisual methods</subject><subject>Diffusion coefficient</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Gibbs sampler</subject><subject>Hypoelliptic diffusion</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Molecular dynamics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Numerical methods</subject><subject>Observation</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Partial observation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quantitative analysis</subject><subject>Sampling</subject><subject>Sciences and techniques of general use</subject><subject>Signalling</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUk1v1DAQjRBIlMJPQERIcEvwRxI7Bw50oS1SVVCXiuNokrWpQ3Yd7Gy7---ZNNUKcaqlsS3Pe8_PM06SlLOc0_jQ5byoVFbrSueCMZ0zVuk63z1Jjg6Jp7SXVZ2pgovnyYsYO0ajUvIoWXzHgGszmpCaOLo1js5vUutDOmAYHfb9PvVNNOHWrNKb_eBN37thdG26ctZuI6Hjy-SZxT6aVw_rcXJ9-uXH4jy7-Hb2dfHpImsryetMNBy5KoypWGENWolaaaMZExXScVXWttQNaqlbbjlfSYvlqi2aWpiGCaXkcfJ-1h2C_7Mlu7B2sSVDuDF-G0EqVqpSPgIoi6IshSbg2_-And-GDT0CqJa11opPanoGtcHHGIyFIVChwh44g6kH0MFUaphKPfE03PcAdkQ9n6nBDKY98JoeOx9ibOAWJCpO055iupIWRzEdDRRFDUrCzbgmqXcPVjG22NuAm9bFg6RgteKlLAj3ccbdud7sH20VrpbLE9oR__XM7-Lowz_6gkl934Rszrs4mt0hj-E30IdSJfy8PAOhP7PLhdJwRfg3M96iB_wVyPP1UjAuGS9VzYWUfwH9pdRx</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Pokern, Yvo</creator><creator>Stuart, Andrew M.</creator><creator>Wiberg, Petter</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Parameter estimation for partially observed hypoelliptic diffusions</title><author>Pokern, Yvo ; Stuart, Andrew M. ; Wiberg, Petter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Audiovisual methods</topic><topic>Diffusion coefficient</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Gibbs sampler</topic><topic>Hypoelliptic diffusion</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Molecular dynamics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Numerical methods</topic><topic>Observation</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Partial observation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quantitative analysis</topic><topic>Sampling</topic><topic>Sciences and techniques of general use</topic><topic>Signalling</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokern, Yvo</creatorcontrib><creatorcontrib>Stuart, Andrew M.</creatorcontrib><creatorcontrib>Wiberg, Petter</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokern, Yvo</au><au>Stuart, Andrew M.</au><au>Wiberg, Petter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation for partially observed hypoelliptic diffusions</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2009</date><risdate>2009</risdate><volume>71</volume><issue>1</issue><spage>49</spage><epage>73</epage><pages>49-73</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2008.00689.x</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2009, Vol.71 (1), p.49-73 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_37057537 |
source | RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Algebra Approximation Audiovisual methods Diffusion coefficient Estimation Estimators Exact sciences and technology General topics Gibbs sampler Hypoelliptic diffusion Linear and multilinear algebra, matrix theory Markov processes Mathematics Maximum likelihood estimation Maximum likelihood estimators Missing data Modeling Molecular dynamics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Numerical methods Observation Parameter estimation Parametric models Partial observation Probability and statistics Probability theory and stochastic processes Quantitative analysis Sampling Sciences and techniques of general use Signalling Standard deviation Statistical methods Statistics Studies |
title | Parameter estimation for partially observed hypoelliptic diffusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20for%20partially%20observed%20hypoelliptic%20diffusions&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Pokern,%20Yvo&rft.date=2009&rft.volume=71&rft.issue=1&rft.spage=49&rft.epage=73&rft.pages=49-73&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2008.00689.x&rft_dat=%3Cjstor_proqu%3E20203877%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200988717&rft_id=info:pmid/&rft_jstor_id=20203877&rfr_iscdi=true |