Parameter estimation for partially observed hypoelliptic diffusions

Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2009, Vol.71 (1), p.49-73
Hauptverfasser: Pokern, Yvo, Stuart, Andrew M., Wiberg, Petter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 49
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 71
creator Pokern, Yvo
Stuart, Andrew M.
Wiberg, Petter
description Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.
doi_str_mv 10.1111/j.1467-9868.2008.00689.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37057537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20203877</jstor_id><sourcerecordid>20203877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRBIlMJPQERIcEvwRxI7Bw50oS1SVVCXiuNokrWpQ3Yd7Gy7---ZNNUKcaqlsS3Pe8_PM06SlLOc0_jQ5byoVFbrSueCMZ0zVuk63z1Jjg6Jp7SXVZ2pgovnyYsYO0ajUvIoWXzHgGszmpCaOLo1js5vUutDOmAYHfb9PvVNNOHWrNKb_eBN37thdG26ctZuI6Hjy-SZxT6aVw_rcXJ9-uXH4jy7-Hb2dfHpImsryetMNBy5KoypWGENWolaaaMZExXScVXWttQNaqlbbjlfSYvlqi2aWpiGCaXkcfJ-1h2C_7Mlu7B2sSVDuDF-G0EqVqpSPgIoi6IshSbg2_-And-GDT0CqJa11opPanoGtcHHGIyFIVChwh44g6kH0MFUaphKPfE03PcAdkQ9n6nBDKY98JoeOx9ibOAWJCpO055iupIWRzEdDRRFDUrCzbgmqXcPVjG22NuAm9bFg6RgteKlLAj3ccbdud7sH20VrpbLE9oR__XM7-Lowz_6gkl934Rszrs4mt0hj-E30IdSJfy8PAOhP7PLhdJwRfg3M96iB_wVyPP1UjAuGS9VzYWUfwH9pdRx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200988717</pqid></control><display><type>article</type><title>Parameter estimation for partially observed hypoelliptic diffusions</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pokern, Yvo ; Stuart, Andrew M. ; Wiberg, Petter</creator><creatorcontrib>Pokern, Yvo ; Stuart, Andrew M. ; Wiberg, Petter</creatorcontrib><description>Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2008.00689.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Algebra ; Approximation ; Audiovisual methods ; Diffusion coefficient ; Estimation ; Estimators ; Exact sciences and technology ; General topics ; Gibbs sampler ; Hypoelliptic diffusion ; Linear and multilinear algebra, matrix theory ; Markov processes ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Missing data ; Modeling ; Molecular dynamics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Numerical methods ; Observation ; Parameter estimation ; Parametric models ; Partial observation ; Probability and statistics ; Probability theory and stochastic processes ; Quantitative analysis ; Sampling ; Sciences and techniques of general use ; Signalling ; Standard deviation ; Statistical methods ; Statistics ; Studies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2009, Vol.71 (1), p.49-73</ispartof><rights>Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2009 Royal Statistical Society</rights><rights>2009 INIST-CNRS</rights><rights>2009 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</citedby><cites>FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20203877$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20203877$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3993,4009,27902,27903,27904,45553,45554,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20971534$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a71_3ay_3a2009_3ai_3a1_3ap_3a49-73.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Pokern, Yvo</creatorcontrib><creatorcontrib>Stuart, Andrew M.</creatorcontrib><creatorcontrib>Wiberg, Petter</creatorcontrib><title>Parameter estimation for partially observed hypoelliptic diffusions</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Audiovisual methods</subject><subject>Diffusion coefficient</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Gibbs sampler</subject><subject>Hypoelliptic diffusion</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Molecular dynamics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Numerical methods</subject><subject>Observation</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Partial observation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quantitative analysis</subject><subject>Sampling</subject><subject>Sciences and techniques of general use</subject><subject>Signalling</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUk1v1DAQjRBIlMJPQERIcEvwRxI7Bw50oS1SVVCXiuNokrWpQ3Yd7Gy7---ZNNUKcaqlsS3Pe8_PM06SlLOc0_jQ5byoVFbrSueCMZ0zVuk63z1Jjg6Jp7SXVZ2pgovnyYsYO0ajUvIoWXzHgGszmpCaOLo1js5vUutDOmAYHfb9PvVNNOHWrNKb_eBN37thdG26ctZuI6Hjy-SZxT6aVw_rcXJ9-uXH4jy7-Hb2dfHpImsryetMNBy5KoypWGENWolaaaMZExXScVXWttQNaqlbbjlfSYvlqi2aWpiGCaXkcfJ-1h2C_7Mlu7B2sSVDuDF-G0EqVqpSPgIoi6IshSbg2_-And-GDT0CqJa11opPanoGtcHHGIyFIVChwh44g6kH0MFUaphKPfE03PcAdkQ9n6nBDKY98JoeOx9ibOAWJCpO055iupIWRzEdDRRFDUrCzbgmqXcPVjG22NuAm9bFg6RgteKlLAj3ccbdud7sH20VrpbLE9oR__XM7-Lowz_6gkl934Rszrs4mt0hj-E30IdSJfy8PAOhP7PLhdJwRfg3M96iB_wVyPP1UjAuGS9VzYWUfwH9pdRx</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Pokern, Yvo</creator><creator>Stuart, Andrew M.</creator><creator>Wiberg, Petter</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Parameter estimation for partially observed hypoelliptic diffusions</title><author>Pokern, Yvo ; Stuart, Andrew M. ; Wiberg, Petter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6319-2b1a174ee604feaf3a878e80026a74e659f58ba838c1f11d3fa5dc4b92eb02773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Audiovisual methods</topic><topic>Diffusion coefficient</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Gibbs sampler</topic><topic>Hypoelliptic diffusion</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Molecular dynamics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Numerical methods</topic><topic>Observation</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Partial observation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quantitative analysis</topic><topic>Sampling</topic><topic>Sciences and techniques of general use</topic><topic>Signalling</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokern, Yvo</creatorcontrib><creatorcontrib>Stuart, Andrew M.</creatorcontrib><creatorcontrib>Wiberg, Petter</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokern, Yvo</au><au>Stuart, Andrew M.</au><au>Wiberg, Petter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation for partially observed hypoelliptic diffusions</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2009</date><risdate>2009</risdate><volume>71</volume><issue>1</issue><spage>49</spage><epage>73</epage><pages>49-73</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2008.00689.x</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2009, Vol.71 (1), p.49-73
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_37057537
source RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Algebra
Approximation
Audiovisual methods
Diffusion coefficient
Estimation
Estimators
Exact sciences and technology
General topics
Gibbs sampler
Hypoelliptic diffusion
Linear and multilinear algebra, matrix theory
Markov processes
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
Missing data
Modeling
Molecular dynamics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Numerical methods
Observation
Parameter estimation
Parametric models
Partial observation
Probability and statistics
Probability theory and stochastic processes
Quantitative analysis
Sampling
Sciences and techniques of general use
Signalling
Standard deviation
Statistical methods
Statistics
Studies
title Parameter estimation for partially observed hypoelliptic diffusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20for%20partially%20observed%20hypoelliptic%20diffusions&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Pokern,%20Yvo&rft.date=2009&rft.volume=71&rft.issue=1&rft.spage=49&rft.epage=73&rft.pages=49-73&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2008.00689.x&rft_dat=%3Cjstor_proqu%3E20203877%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200988717&rft_id=info:pmid/&rft_jstor_id=20203877&rfr_iscdi=true