Efficient Semiparametric Estimation of Quantile Treatment Effects

This paper develops estimators for quantile treatment effects under the identifying restriction that selection to treatment is based on observable characteristics. Identification is achieved without requiring computation of the conditional quantiles of the potential outcomes. Instead, the identifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2007-01, Vol.75 (1), p.259-276
1. Verfasser: Firpo, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 1
container_start_page 259
container_title Econometrica
container_volume 75
creator Firpo, Sergio
description This paper develops estimators for quantile treatment effects under the identifying restriction that selection to treatment is based on observable characteristics. Identification is achieved without requiring computation of the conditional quantiles of the potential outcomes. Instead, the identification results for the marginal quantiles lead to an estimation procedure for the quantile treatment effect parameters that has two steps: nonparametric estimation of the propensity score and computation of the difference between the solutions of two separate minimization problems. Root-N consistency, asymptotic normality, and achievement of the semiparametric efficiency bound are shown for that estimator. A consistent estimation procedure for the variance is also presented. Finally, the method developed here is applied to evaluation of a job training program and to a Monte Carlo exercise. Results from the empirical application indicate that the method works relatively well even for a data set with limited overlap between treated and controls in the support of covariates. The Monte Carlo study shows that, for a relatively small sample size, the method produces estimates with good precision and low bias, especially for middle quantiles.
doi_str_mv 10.1111/j.1468-0262.2007.00738.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37043148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4123114</jstor_id><sourcerecordid>4123114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5728-db94c1fff57380c3be79c7fdf9b1a79d543abd3d0a1566e607b73e1f173cd7ca3</originalsourceid><addsrcrecordid>eNqNkF1r2zAYhcVoYWm7f7ALM1jv7OnTki92kYYsG5SsWzN6KWRZAnn-yCSFpv9-8lwy6FWFhATnOYdXB4AMwQKl9aktEC1FDnGJCwwhL9Ihoji-AYuTcAYWECKcV6XAb8FFCC2EkKW9AMu1tU47M8Ts3vRur7zqTfROZ-sQXa-iG4dstNmPgxqi60y280bFfuKT0-gYrsC5VV0w757vS_Dry3q3-prfft98Wy1vc804FnlTV1Qjay1L40FNasMrzW1jqxopXjWMElU3pIEKsbI0JeQ1JwZZxIluuFbkElzPuXs__jmYEGXvgjZdpwYzHoIkHFKCqEjghxdgOx78kGaTGBJRISJYgsQMaT-G4I2Ve5--658kgnIqVrZy6k9O_cmpWPmvWHlM1o_P-Spo1VmvBu3Cf7-gjDKCE_d55h5Tb0-vzpfr1W6ZXsn_fva3IY7-5KcIE4RokvNZdiGa40lW_rcsOeFMPmw3cnPz8_5u-7CVd-QvrpmkKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203891385</pqid></control><display><type>article</type><title>Efficient Semiparametric Estimation of Quantile Treatment Effects</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Wiley Online Library All Journals</source><creator>Firpo, Sergio</creator><creatorcontrib>Firpo, Sergio</creatorcontrib><description>This paper develops estimators for quantile treatment effects under the identifying restriction that selection to treatment is based on observable characteristics. Identification is achieved without requiring computation of the conditional quantiles of the potential outcomes. Instead, the identification results for the marginal quantiles lead to an estimation procedure for the quantile treatment effect parameters that has two steps: nonparametric estimation of the propensity score and computation of the difference between the solutions of two separate minimization problems. Root-N consistency, asymptotic normality, and achievement of the semiparametric efficiency bound are shown for that estimator. A consistent estimation procedure for the variance is also presented. Finally, the method developed here is applied to evaluation of a job training program and to a Monte Carlo exercise. Results from the empirical application indicate that the method works relatively well even for a data set with limited overlap between treated and controls in the support of covariates. The Monte Carlo study shows that, for a relatively small sample size, the method produces estimates with good precision and low bias, especially for middle quantiles.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/j.1468-0262.2007.00738.x</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishing Ltd</publisher><subject>Analytical estimating ; Applications ; Consistent estimators ; Economic efficiency ; efficient estimation ; Estimating techniques ; Estimation ; Estimation methods ; Estimators ; Exact sciences and technology ; Insurance, economics, finance ; Mathematics ; Measurement ; Medical treatment ; Monte Carlo simulation ; Nonparametric inference ; Notes and Comments ; Parameter estimation ; Probability and statistics ; Project evaluation ; propensity score ; Quantile treatment effects ; Quantiles ; Quantum efficiency ; Sciences and techniques of general use ; semiparametric efficiency bounds ; semiparametric estimation ; Standard error ; Statistical estimation ; Statistical models ; Statistical variance ; Statistics ; Studies</subject><ispartof>Econometrica, 2007-01, Vol.75 (1), p.259-276</ispartof><rights>Copyright 2007 The Econometric Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Jan 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5728-db94c1fff57380c3be79c7fdf9b1a79d543abd3d0a1566e607b73e1f173cd7ca3</citedby><cites>FETCH-LOGICAL-c5728-db94c1fff57380c3be79c7fdf9b1a79d543abd3d0a1566e607b73e1f173cd7ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4123114$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4123114$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,4024,27923,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18454532$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Firpo, Sergio</creatorcontrib><title>Efficient Semiparametric Estimation of Quantile Treatment Effects</title><title>Econometrica</title><description>This paper develops estimators for quantile treatment effects under the identifying restriction that selection to treatment is based on observable characteristics. Identification is achieved without requiring computation of the conditional quantiles of the potential outcomes. Instead, the identification results for the marginal quantiles lead to an estimation procedure for the quantile treatment effect parameters that has two steps: nonparametric estimation of the propensity score and computation of the difference between the solutions of two separate minimization problems. Root-N consistency, asymptotic normality, and achievement of the semiparametric efficiency bound are shown for that estimator. A consistent estimation procedure for the variance is also presented. Finally, the method developed here is applied to evaluation of a job training program and to a Monte Carlo exercise. Results from the empirical application indicate that the method works relatively well even for a data set with limited overlap between treated and controls in the support of covariates. The Monte Carlo study shows that, for a relatively small sample size, the method produces estimates with good precision and low bias, especially for middle quantiles.</description><subject>Analytical estimating</subject><subject>Applications</subject><subject>Consistent estimators</subject><subject>Economic efficiency</subject><subject>efficient estimation</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Medical treatment</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric inference</subject><subject>Notes and Comments</subject><subject>Parameter estimation</subject><subject>Probability and statistics</subject><subject>Project evaluation</subject><subject>propensity score</subject><subject>Quantile treatment effects</subject><subject>Quantiles</subject><subject>Quantum efficiency</subject><subject>Sciences and techniques of general use</subject><subject>semiparametric efficiency bounds</subject><subject>semiparametric estimation</subject><subject>Standard error</subject><subject>Statistical estimation</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkF1r2zAYhcVoYWm7f7ALM1jv7OnTki92kYYsG5SsWzN6KWRZAnn-yCSFpv9-8lwy6FWFhATnOYdXB4AMwQKl9aktEC1FDnGJCwwhL9Ihoji-AYuTcAYWECKcV6XAb8FFCC2EkKW9AMu1tU47M8Ts3vRur7zqTfROZ-sQXa-iG4dstNmPgxqi60y280bFfuKT0-gYrsC5VV0w757vS_Dry3q3-prfft98Wy1vc804FnlTV1Qjay1L40FNasMrzW1jqxopXjWMElU3pIEKsbI0JeQ1JwZZxIluuFbkElzPuXs__jmYEGXvgjZdpwYzHoIkHFKCqEjghxdgOx78kGaTGBJRISJYgsQMaT-G4I2Ve5--658kgnIqVrZy6k9O_cmpWPmvWHlM1o_P-Spo1VmvBu3Cf7-gjDKCE_d55h5Tb0-vzpfr1W6ZXsn_fva3IY7-5KcIE4RokvNZdiGa40lW_rcsOeFMPmw3cnPz8_5u-7CVd-QvrpmkKA</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Firpo, Sergio</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200701</creationdate><title>Efficient Semiparametric Estimation of Quantile Treatment Effects</title><author>Firpo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5728-db94c1fff57380c3be79c7fdf9b1a79d543abd3d0a1566e607b73e1f173cd7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical estimating</topic><topic>Applications</topic><topic>Consistent estimators</topic><topic>Economic efficiency</topic><topic>efficient estimation</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Medical treatment</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric inference</topic><topic>Notes and Comments</topic><topic>Parameter estimation</topic><topic>Probability and statistics</topic><topic>Project evaluation</topic><topic>propensity score</topic><topic>Quantile treatment effects</topic><topic>Quantiles</topic><topic>Quantum efficiency</topic><topic>Sciences and techniques of general use</topic><topic>semiparametric efficiency bounds</topic><topic>semiparametric estimation</topic><topic>Standard error</topic><topic>Statistical estimation</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firpo, Sergio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firpo, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Semiparametric Estimation of Quantile Treatment Effects</atitle><jtitle>Econometrica</jtitle><date>2007-01</date><risdate>2007</risdate><volume>75</volume><issue>1</issue><spage>259</spage><epage>276</epage><pages>259-276</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>This paper develops estimators for quantile treatment effects under the identifying restriction that selection to treatment is based on observable characteristics. Identification is achieved without requiring computation of the conditional quantiles of the potential outcomes. Instead, the identification results for the marginal quantiles lead to an estimation procedure for the quantile treatment effect parameters that has two steps: nonparametric estimation of the propensity score and computation of the difference between the solutions of two separate minimization problems. Root-N consistency, asymptotic normality, and achievement of the semiparametric efficiency bound are shown for that estimator. A consistent estimation procedure for the variance is also presented. Finally, the method developed here is applied to evaluation of a job training program and to a Monte Carlo exercise. Results from the empirical application indicate that the method works relatively well even for a data set with limited overlap between treated and controls in the support of covariates. The Monte Carlo study shows that, for a relatively small sample size, the method produces estimates with good precision and low bias, especially for middle quantiles.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0262.2007.00738.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2007-01, Vol.75 (1), p.259-276
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_37043148
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Wiley Online Library All Journals
subjects Analytical estimating
Applications
Consistent estimators
Economic efficiency
efficient estimation
Estimating techniques
Estimation
Estimation methods
Estimators
Exact sciences and technology
Insurance, economics, finance
Mathematics
Measurement
Medical treatment
Monte Carlo simulation
Nonparametric inference
Notes and Comments
Parameter estimation
Probability and statistics
Project evaluation
propensity score
Quantile treatment effects
Quantiles
Quantum efficiency
Sciences and techniques of general use
semiparametric efficiency bounds
semiparametric estimation
Standard error
Statistical estimation
Statistical models
Statistical variance
Statistics
Studies
title Efficient Semiparametric Estimation of Quantile Treatment Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Semiparametric%20Estimation%20of%20Quantile%20Treatment%20Effects&rft.jtitle=Econometrica&rft.au=Firpo,%20Sergio&rft.date=2007-01&rft.volume=75&rft.issue=1&rft.spage=259&rft.epage=276&rft.pages=259-276&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/j.1468-0262.2007.00738.x&rft_dat=%3Cjstor_proqu%3E4123114%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203891385&rft_id=info:pmid/&rft_jstor_id=4123114&rfr_iscdi=true