Bayesian Generic Priors for Causal Learning
The article presents a Bayesian model of causal learning that incorporates generic priors -systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes-causes that are few in number and hig...
Gespeichert in:
Veröffentlicht in: | Psychological review 2008-10, Vol.115 (4), p.955-984 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 984 |
---|---|
container_issue | 4 |
container_start_page | 955 |
container_title | Psychological review |
container_volume | 115 |
creator | Lu, Hongjing Yuille, Alan L Liljeholm, Mimi Cheng, Patricia W Holyoak, Keith J |
description | The article presents a Bayesian model of causal learning that incorporates
generic priors
-systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor
sparse and strong
(SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The
SS power
model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently (
P. W. Cheng, 1997
). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed. |
doi_str_mv | 10.1037/a0013256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37036875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ823666</ericid><sourcerecordid>37036875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a584t-9cd44c256a398e380a7d9c1a46cc05ac3f55279ee6cb3c3ff9a67b9a5c26c1493</originalsourceid><addsrcrecordid>eNp90F1LHDEUBuBQlLrVgj9AZBAqgp2ak8_JpS5WWxbsRQu9C2fPZmRkdmZNdoT9982yW4W9MDchnIf3hJexY-DfgEt7hZyDFNp8YCNw0pWgLOyxEedSlsLpvwfsU0pPPB9w7iM7gMppJYCP2OUNrkJqsCvuQhdiQ8Wv2PQxFXUfizEOCdtiEjB2Tfd4xPZrbFP4vL0P2Z_vt7_H9-Xk4e7H-HpSoq7UsnQ0U4ryb1C6KsiKo505AlSGiGskWWstrAvB0FTmV-3Q2KlDTcIQKCcP2fkmdxH75yGkpZ83iULbYhf6IXlpuTSV1Rme7cCnfohd_ps3oHJSXvMeEpBLqCysky42iGKfUgy1X8RmjnHlgft1xf5_xZmebvOG6TzM3uC20wy-bAEmwraO2FGTXp3g1glZiexONm5d--v49mceGbPe83UzxgX6RVoRxmVDbUg0xBi6pY_hxQNor7zT-m3rLt9x_wBTYaVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614493279</pqid></control><display><type>article</type><title>Bayesian Generic Priors for Causal Learning</title><source>MEDLINE</source><source>APA PsycARTICLES</source><creator>Lu, Hongjing ; Yuille, Alan L ; Liljeholm, Mimi ; Cheng, Patricia W ; Holyoak, Keith J</creator><contributor>Rayner, Keith</contributor><creatorcontrib>Lu, Hongjing ; Yuille, Alan L ; Liljeholm, Mimi ; Cheng, Patricia W ; Holyoak, Keith J ; Rayner, Keith</creatorcontrib><description>The article presents a Bayesian model of causal learning that incorporates
generic priors
-systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor
sparse and strong
(SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The
SS power
model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently (
P. W. Cheng, 1997
). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/a0013256</identifier><identifier>PMID: 18954210</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Adolescent ; Adult ; Aged ; Anti-Allergic Agents - adverse effects ; Association ; Bayes Theorem ; Bayesian analysis ; Bayesian method ; Bayesian Statistics ; Biological and medical sciences ; Causality ; Cognition ; DNA - genetics ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Headache - chemically induced ; Headache - prevention & control ; Human ; Humans ; Influences ; Judgement ; Judgment ; Learning ; Learning Processes ; Learning. Memory ; Male ; Middle Aged ; Minerals - adverse effects ; Problem Solving ; Psychological factors ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology</subject><ispartof>Psychological review, 2008-10, Vol.115 (4), p.955-984</ispartof><rights>2008 American Psychological Association</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Psychological Association Oct 2008</rights><rights>2008, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a584t-9cd44c256a398e380a7d9c1a46cc05ac3f55279ee6cb3c3ff9a67b9a5c26c1493</citedby><orcidid>0000-0001-8010-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ823666$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20792382$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18954210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rayner, Keith</contributor><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Yuille, Alan L</creatorcontrib><creatorcontrib>Liljeholm, Mimi</creatorcontrib><creatorcontrib>Cheng, Patricia W</creatorcontrib><creatorcontrib>Holyoak, Keith J</creatorcontrib><title>Bayesian Generic Priors for Causal Learning</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>The article presents a Bayesian model of causal learning that incorporates
generic priors
-systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor
sparse and strong
(SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The
SS power
model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently (
P. W. Cheng, 1997
). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Anti-Allergic Agents - adverse effects</subject><subject>Association</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bayesian Statistics</subject><subject>Biological and medical sciences</subject><subject>Causality</subject><subject>Cognition</subject><subject>DNA - genetics</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Headache - chemically induced</subject><subject>Headache - prevention & control</subject><subject>Human</subject><subject>Humans</subject><subject>Influences</subject><subject>Judgement</subject><subject>Judgment</subject><subject>Learning</subject><subject>Learning Processes</subject><subject>Learning. Memory</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Minerals - adverse effects</subject><subject>Problem Solving</subject><subject>Psychological factors</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1LHDEUBuBQlLrVgj9AZBAqgp2ak8_JpS5WWxbsRQu9C2fPZmRkdmZNdoT9982yW4W9MDchnIf3hJexY-DfgEt7hZyDFNp8YCNw0pWgLOyxEedSlsLpvwfsU0pPPB9w7iM7gMppJYCP2OUNrkJqsCvuQhdiQ8Wv2PQxFXUfizEOCdtiEjB2Tfd4xPZrbFP4vL0P2Z_vt7_H9-Xk4e7H-HpSoq7UsnQ0U4ryb1C6KsiKo505AlSGiGskWWstrAvB0FTmV-3Q2KlDTcIQKCcP2fkmdxH75yGkpZ83iULbYhf6IXlpuTSV1Rme7cCnfohd_ps3oHJSXvMeEpBLqCysky42iGKfUgy1X8RmjnHlgft1xf5_xZmebvOG6TzM3uC20wy-bAEmwraO2FGTXp3g1glZiexONm5d--v49mceGbPe83UzxgX6RVoRxmVDbUg0xBi6pY_hxQNor7zT-m3rLt9x_wBTYaVU</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Lu, Hongjing</creator><creator>Yuille, Alan L</creator><creator>Liljeholm, Mimi</creator><creator>Cheng, Patricia W</creator><creator>Holyoak, Keith J</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7RZ</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid></search><sort><creationdate>20081001</creationdate><title>Bayesian Generic Priors for Causal Learning</title><author>Lu, Hongjing ; Yuille, Alan L ; Liljeholm, Mimi ; Cheng, Patricia W ; Holyoak, Keith J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a584t-9cd44c256a398e380a7d9c1a46cc05ac3f55279ee6cb3c3ff9a67b9a5c26c1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Anti-Allergic Agents - adverse effects</topic><topic>Association</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bayesian Statistics</topic><topic>Biological and medical sciences</topic><topic>Causality</topic><topic>Cognition</topic><topic>DNA - genetics</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Headache - chemically induced</topic><topic>Headache - prevention & control</topic><topic>Human</topic><topic>Humans</topic><topic>Influences</topic><topic>Judgement</topic><topic>Judgment</topic><topic>Learning</topic><topic>Learning Processes</topic><topic>Learning. Memory</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Minerals - adverse effects</topic><topic>Problem Solving</topic><topic>Psychological factors</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Yuille, Alan L</creatorcontrib><creatorcontrib>Liljeholm, Mimi</creatorcontrib><creatorcontrib>Cheng, Patricia W</creatorcontrib><creatorcontrib>Holyoak, Keith J</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongjing</au><au>Yuille, Alan L</au><au>Liljeholm, Mimi</au><au>Cheng, Patricia W</au><au>Holyoak, Keith J</au><au>Rayner, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ823666</ericid><atitle>Bayesian Generic Priors for Causal Learning</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>115</volume><issue>4</issue><spage>955</spage><epage>984</epage><pages>955-984</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>The article presents a Bayesian model of causal learning that incorporates
generic priors
-systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor
sparse and strong
(SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The
SS power
model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently (
P. W. Cheng, 1997
). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>18954210</pmid><doi>10.1037/a0013256</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-295X |
ispartof | Psychological review, 2008-10, Vol.115 (4), p.955-984 |
issn | 0033-295X 1939-1471 |
language | eng |
recordid | cdi_proquest_miscellaneous_37036875 |
source | MEDLINE; APA PsycARTICLES |
subjects | Adolescent Adult Aged Anti-Allergic Agents - adverse effects Association Bayes Theorem Bayesian analysis Bayesian method Bayesian Statistics Biological and medical sciences Causality Cognition DNA - genetics Female Fundamental and applied biological sciences. Psychology Gene Expression Headache - chemically induced Headache - prevention & control Human Humans Influences Judgement Judgment Learning Learning Processes Learning. Memory Male Middle Aged Minerals - adverse effects Problem Solving Psychological factors Psychology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology |
title | Bayesian Generic Priors for Causal Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Generic%20Priors%20for%20Causal%20Learning&rft.jtitle=Psychological%20review&rft.au=Lu,%20Hongjing&rft.date=2008-10-01&rft.volume=115&rft.issue=4&rft.spage=955&rft.epage=984&rft.pages=955-984&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/a0013256&rft_dat=%3Cproquest_cross%3E37036875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614493279&rft_id=info:pmid/18954210&rft_ericid=EJ823666&rfr_iscdi=true |