Bayesian Generic Priors for Causal Learning

The article presents a Bayesian model of causal learning that incorporates generic priors -systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes-causes that are few in number and hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2008-10, Vol.115 (4), p.955-984
Hauptverfasser: Lu, Hongjing, Yuille, Alan L, Liljeholm, Mimi, Cheng, Patricia W, Holyoak, Keith J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 984
container_issue 4
container_start_page 955
container_title Psychological review
container_volume 115
creator Lu, Hongjing
Yuille, Alan L
Liljeholm, Mimi
Cheng, Patricia W
Holyoak, Keith J
description The article presents a Bayesian model of causal learning that incorporates generic priors -systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The SS power model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently ( P. W. Cheng, 1997 ). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.
doi_str_mv 10.1037/a0013256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37036875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ823666</ericid><sourcerecordid>37036875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a584t-9cd44c256a398e380a7d9c1a46cc05ac3f55279ee6cb3c3ff9a67b9a5c26c1493</originalsourceid><addsrcrecordid>eNp90F1LHDEUBuBQlLrVgj9AZBAqgp2ak8_JpS5WWxbsRQu9C2fPZmRkdmZNdoT9982yW4W9MDchnIf3hJexY-DfgEt7hZyDFNp8YCNw0pWgLOyxEedSlsLpvwfsU0pPPB9w7iM7gMppJYCP2OUNrkJqsCvuQhdiQ8Wv2PQxFXUfizEOCdtiEjB2Tfd4xPZrbFP4vL0P2Z_vt7_H9-Xk4e7H-HpSoq7UsnQ0U4ryb1C6KsiKo505AlSGiGskWWstrAvB0FTmV-3Q2KlDTcIQKCcP2fkmdxH75yGkpZ83iULbYhf6IXlpuTSV1Rme7cCnfohd_ps3oHJSXvMeEpBLqCysky42iGKfUgy1X8RmjnHlgft1xf5_xZmebvOG6TzM3uC20wy-bAEmwraO2FGTXp3g1glZiexONm5d--v49mceGbPe83UzxgX6RVoRxmVDbUg0xBi6pY_hxQNor7zT-m3rLt9x_wBTYaVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614493279</pqid></control><display><type>article</type><title>Bayesian Generic Priors for Causal Learning</title><source>MEDLINE</source><source>APA PsycARTICLES</source><creator>Lu, Hongjing ; Yuille, Alan L ; Liljeholm, Mimi ; Cheng, Patricia W ; Holyoak, Keith J</creator><contributor>Rayner, Keith</contributor><creatorcontrib>Lu, Hongjing ; Yuille, Alan L ; Liljeholm, Mimi ; Cheng, Patricia W ; Holyoak, Keith J ; Rayner, Keith</creatorcontrib><description>The article presents a Bayesian model of causal learning that incorporates generic priors -systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The SS power model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently ( P. W. Cheng, 1997 ). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/a0013256</identifier><identifier>PMID: 18954210</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Adolescent ; Adult ; Aged ; Anti-Allergic Agents - adverse effects ; Association ; Bayes Theorem ; Bayesian analysis ; Bayesian method ; Bayesian Statistics ; Biological and medical sciences ; Causality ; Cognition ; DNA - genetics ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Headache - chemically induced ; Headache - prevention &amp; control ; Human ; Humans ; Influences ; Judgement ; Judgment ; Learning ; Learning Processes ; Learning. Memory ; Male ; Middle Aged ; Minerals - adverse effects ; Problem Solving ; Psychological factors ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology</subject><ispartof>Psychological review, 2008-10, Vol.115 (4), p.955-984</ispartof><rights>2008 American Psychological Association</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Psychological Association Oct 2008</rights><rights>2008, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a584t-9cd44c256a398e380a7d9c1a46cc05ac3f55279ee6cb3c3ff9a67b9a5c26c1493</citedby><orcidid>0000-0001-8010-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ823666$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20792382$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18954210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rayner, Keith</contributor><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Yuille, Alan L</creatorcontrib><creatorcontrib>Liljeholm, Mimi</creatorcontrib><creatorcontrib>Cheng, Patricia W</creatorcontrib><creatorcontrib>Holyoak, Keith J</creatorcontrib><title>Bayesian Generic Priors for Causal Learning</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>The article presents a Bayesian model of causal learning that incorporates generic priors -systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The SS power model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently ( P. W. Cheng, 1997 ). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Anti-Allergic Agents - adverse effects</subject><subject>Association</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bayesian Statistics</subject><subject>Biological and medical sciences</subject><subject>Causality</subject><subject>Cognition</subject><subject>DNA - genetics</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Headache - chemically induced</subject><subject>Headache - prevention &amp; control</subject><subject>Human</subject><subject>Humans</subject><subject>Influences</subject><subject>Judgement</subject><subject>Judgment</subject><subject>Learning</subject><subject>Learning Processes</subject><subject>Learning. Memory</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Minerals - adverse effects</subject><subject>Problem Solving</subject><subject>Psychological factors</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1LHDEUBuBQlLrVgj9AZBAqgp2ak8_JpS5WWxbsRQu9C2fPZmRkdmZNdoT9982yW4W9MDchnIf3hJexY-DfgEt7hZyDFNp8YCNw0pWgLOyxEedSlsLpvwfsU0pPPB9w7iM7gMppJYCP2OUNrkJqsCvuQhdiQ8Wv2PQxFXUfizEOCdtiEjB2Tfd4xPZrbFP4vL0P2Z_vt7_H9-Xk4e7H-HpSoq7UsnQ0U4ryb1C6KsiKo505AlSGiGskWWstrAvB0FTmV-3Q2KlDTcIQKCcP2fkmdxH75yGkpZ83iULbYhf6IXlpuTSV1Rme7cCnfohd_ps3oHJSXvMeEpBLqCysky42iGKfUgy1X8RmjnHlgft1xf5_xZmebvOG6TzM3uC20wy-bAEmwraO2FGTXp3g1glZiexONm5d--v49mceGbPe83UzxgX6RVoRxmVDbUg0xBi6pY_hxQNor7zT-m3rLt9x_wBTYaVU</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Lu, Hongjing</creator><creator>Yuille, Alan L</creator><creator>Liljeholm, Mimi</creator><creator>Cheng, Patricia W</creator><creator>Holyoak, Keith J</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7RZ</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid></search><sort><creationdate>20081001</creationdate><title>Bayesian Generic Priors for Causal Learning</title><author>Lu, Hongjing ; Yuille, Alan L ; Liljeholm, Mimi ; Cheng, Patricia W ; Holyoak, Keith J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a584t-9cd44c256a398e380a7d9c1a46cc05ac3f55279ee6cb3c3ff9a67b9a5c26c1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Anti-Allergic Agents - adverse effects</topic><topic>Association</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bayesian Statistics</topic><topic>Biological and medical sciences</topic><topic>Causality</topic><topic>Cognition</topic><topic>DNA - genetics</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Headache - chemically induced</topic><topic>Headache - prevention &amp; control</topic><topic>Human</topic><topic>Humans</topic><topic>Influences</topic><topic>Judgement</topic><topic>Judgment</topic><topic>Learning</topic><topic>Learning Processes</topic><topic>Learning. Memory</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Minerals - adverse effects</topic><topic>Problem Solving</topic><topic>Psychological factors</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Yuille, Alan L</creatorcontrib><creatorcontrib>Liljeholm, Mimi</creatorcontrib><creatorcontrib>Cheng, Patricia W</creatorcontrib><creatorcontrib>Holyoak, Keith J</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongjing</au><au>Yuille, Alan L</au><au>Liljeholm, Mimi</au><au>Cheng, Patricia W</au><au>Holyoak, Keith J</au><au>Rayner, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ823666</ericid><atitle>Bayesian Generic Priors for Causal Learning</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>115</volume><issue>4</issue><spage>955</spage><epage>984</epage><pages>955-984</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>The article presents a Bayesian model of causal learning that incorporates generic priors -systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes-causes that are few in number and high in their individual powers to produce or prevent effects. The SS power model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently ( P. W. Cheng, 1997 ). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>18954210</pmid><doi>10.1037/a0013256</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-295X
ispartof Psychological review, 2008-10, Vol.115 (4), p.955-984
issn 0033-295X
1939-1471
language eng
recordid cdi_proquest_miscellaneous_37036875
source MEDLINE; APA PsycARTICLES
subjects Adolescent
Adult
Aged
Anti-Allergic Agents - adverse effects
Association
Bayes Theorem
Bayesian analysis
Bayesian method
Bayesian Statistics
Biological and medical sciences
Causality
Cognition
DNA - genetics
Female
Fundamental and applied biological sciences. Psychology
Gene Expression
Headache - chemically induced
Headache - prevention & control
Human
Humans
Influences
Judgement
Judgment
Learning
Learning Processes
Learning. Memory
Male
Middle Aged
Minerals - adverse effects
Problem Solving
Psychological factors
Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
title Bayesian Generic Priors for Causal Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Generic%20Priors%20for%20Causal%20Learning&rft.jtitle=Psychological%20review&rft.au=Lu,%20Hongjing&rft.date=2008-10-01&rft.volume=115&rft.issue=4&rft.spage=955&rft.epage=984&rft.pages=955-984&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/a0013256&rft_dat=%3Cproquest_cross%3E37036875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614493279&rft_id=info:pmid/18954210&rft_ericid=EJ823666&rfr_iscdi=true