Social Choice Theory in the Case of Von Neumann-Morgenstern Utilities

Part I of this paper offers a novel result in social choice theory by extending Harsanyi's well-known utilitarian theorem into a "multi-profile" context. Harsanyi was contented with showing that if the individuals' utilities u t are von Neumann-Morgenstern, and if the given utili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social choice and welfare 1989-01, Vol.6 (3), p.175-187
Hauptverfasser: Coulhon, T., Mongin, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 3
container_start_page 175
container_title Social choice and welfare
container_volume 6
creator Coulhon, T.
Mongin, P.
description Part I of this paper offers a novel result in social choice theory by extending Harsanyi's well-known utilitarian theorem into a "multi-profile" context. Harsanyi was contented with showing that if the individuals' utilities u t are von Neumann-Morgenstern, and if the given utility u of the social planner is VNM as well, then the Pareto indifference rule implies that u is affine in terms of the ui. We provide a related conclusion by considering u as functionally dependent on the u t , through a suitably restricted "social welfare functional" (u₁,..., un) ↦ u = f (uⁱ,...,un). We claim that this result is more in accordance with contemporary social choice theory than Harsanyi's "single-profile" theorem is. Besides, Harsanyi's initial proof of the latter was faulty. Part II of this paper offers an alternative argument which is intended to be both general and simple enough, contrary to the recent proofs published by Fishburn and others. It finally investigates the affine independence problem on the ui discussed by Fishburn as a corollary to Harsanyi's theorem.
doi_str_mv 10.1007/BF00295858
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36920997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41105915</jstor_id><sourcerecordid>41105915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-1869a0ab1ed164390345448f3de02f4588ac313544d4106ab85151b56224b1e73</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqxbsQEDwIq5l87CZHXVoVqh5sxduSbrM2ZZvUZPfQf29KRcHTwPDMzMsgdA7kBggpbu_HhFAlpJAHaACc0YxC8XGIBgSKPIMC-DE6iXFFEqNcDtDozddWt7hcelsbPF0aH7bYOtwtDS51NNg3-N07_GL6tXYue_bh07jYmeDwrLOt7ayJp-io0W00Zz91iGbj0bR8zCavD0_l3SSrqSy6DGSuNNFzMAvIOVOEccG5bNjCENpwIaWuGbDUW3AguZ5LAQLmIk9Z01DBhuhqv3cT_FdvYletbaxN22pnfB8rlitKlNrBy39w5fvgUrYKqEpniWAyqeu9qoOPMZim2gS71mFbAal2_6z-_pnwxR6vYufDr-QARCgQ7BtBjG3h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1293450538</pqid></control><display><type>article</type><title>Social Choice Theory in the Case of Von Neumann-Morgenstern Utilities</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><source>Periodicals Index Online</source><creator>Coulhon, T. ; Mongin, P.</creator><creatorcontrib>Coulhon, T. ; Mongin, P.</creatorcontrib><description>Part I of this paper offers a novel result in social choice theory by extending Harsanyi's well-known utilitarian theorem into a "multi-profile" context. Harsanyi was contented with showing that if the individuals' utilities u t are von Neumann-Morgenstern, and if the given utility u of the social planner is VNM as well, then the Pareto indifference rule implies that u is affine in terms of the ui. We provide a related conclusion by considering u as functionally dependent on the u t , through a suitably restricted "social welfare functional" (u₁,..., un) ↦ u = f (uⁱ,...,un). We claim that this result is more in accordance with contemporary social choice theory than Harsanyi's "single-profile" theorem is. Besides, Harsanyi's initial proof of the latter was faulty. Part II of this paper offers an alternative argument which is intended to be both general and simple enough, contrary to the recent proofs published by Fishburn and others. It finally investigates the affine independence problem on the ui discussed by Fishburn as a corollary to Harsanyi's theorem.</description><identifier>ISSN: 0176-1714</identifier><identifier>EISSN: 1432-217X</identifier><identifier>DOI: 10.1007/BF00295858</identifier><language>eng</language><publisher>Berlin, Germany: Springer Science + Business Media</publisher><subject>Ambivalence ; Axioms ; Economic theory ; Logical theorems ; Lotteries ; Mathematical functions ; Mathematical theorems ; Public choice ; Real numbers ; Social choice ; Social theories ; Utility theory</subject><ispartof>Social choice and welfare, 1989-01, Vol.6 (3), p.175-187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-1869a0ab1ed164390345448f3de02f4588ac313544d4106ab85151b56224b1e73</citedby><cites>FETCH-LOGICAL-c287t-1869a0ab1ed164390345448f3de02f4588ac313544d4106ab85151b56224b1e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41105915$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41105915$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27846,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Coulhon, T.</creatorcontrib><creatorcontrib>Mongin, P.</creatorcontrib><title>Social Choice Theory in the Case of Von Neumann-Morgenstern Utilities</title><title>Social choice and welfare</title><description>Part I of this paper offers a novel result in social choice theory by extending Harsanyi's well-known utilitarian theorem into a "multi-profile" context. Harsanyi was contented with showing that if the individuals' utilities u t are von Neumann-Morgenstern, and if the given utility u of the social planner is VNM as well, then the Pareto indifference rule implies that u is affine in terms of the ui. We provide a related conclusion by considering u as functionally dependent on the u t , through a suitably restricted "social welfare functional" (u₁,..., un) ↦ u = f (uⁱ,...,un). We claim that this result is more in accordance with contemporary social choice theory than Harsanyi's "single-profile" theorem is. Besides, Harsanyi's initial proof of the latter was faulty. Part II of this paper offers an alternative argument which is intended to be both general and simple enough, contrary to the recent proofs published by Fishburn and others. It finally investigates the affine independence problem on the ui discussed by Fishburn as a corollary to Harsanyi's theorem.</description><subject>Ambivalence</subject><subject>Axioms</subject><subject>Economic theory</subject><subject>Logical theorems</subject><subject>Lotteries</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Public choice</subject><subject>Real numbers</subject><subject>Social choice</subject><subject>Social theories</subject><subject>Utility theory</subject><issn>0176-1714</issn><issn>1432-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpd0E1LAzEQBuAgCtbqxbsQEDwIq5l87CZHXVoVqh5sxduSbrM2ZZvUZPfQf29KRcHTwPDMzMsgdA7kBggpbu_HhFAlpJAHaACc0YxC8XGIBgSKPIMC-DE6iXFFEqNcDtDozddWt7hcelsbPF0aH7bYOtwtDS51NNg3-N07_GL6tXYue_bh07jYmeDwrLOt7ayJp-io0W00Zz91iGbj0bR8zCavD0_l3SSrqSy6DGSuNNFzMAvIOVOEccG5bNjCENpwIaWuGbDUW3AguZ5LAQLmIk9Z01DBhuhqv3cT_FdvYletbaxN22pnfB8rlitKlNrBy39w5fvgUrYKqEpniWAyqeu9qoOPMZim2gS71mFbAal2_6z-_pnwxR6vYufDr-QARCgQ7BtBjG3h</recordid><startdate>19890101</startdate><enddate>19890101</enddate><creator>Coulhon, T.</creator><creator>Mongin, P.</creator><general>Springer Science + Business Media</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>SDSKB</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19890101</creationdate><title>Social Choice Theory in the Case of Von Neumann-Morgenstern Utilities</title><author>Coulhon, T. ; Mongin, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-1869a0ab1ed164390345448f3de02f4588ac313544d4106ab85151b56224b1e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Ambivalence</topic><topic>Axioms</topic><topic>Economic theory</topic><topic>Logical theorems</topic><topic>Lotteries</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Public choice</topic><topic>Real numbers</topic><topic>Social choice</topic><topic>Social theories</topic><topic>Utility theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coulhon, T.</creatorcontrib><creatorcontrib>Mongin, P.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Periodicals Index Online Segment 43</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Social choice and welfare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coulhon, T.</au><au>Mongin, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Choice Theory in the Case of Von Neumann-Morgenstern Utilities</atitle><jtitle>Social choice and welfare</jtitle><date>1989-01-01</date><risdate>1989</risdate><volume>6</volume><issue>3</issue><spage>175</spage><epage>187</epage><pages>175-187</pages><issn>0176-1714</issn><eissn>1432-217X</eissn><abstract>Part I of this paper offers a novel result in social choice theory by extending Harsanyi's well-known utilitarian theorem into a "multi-profile" context. Harsanyi was contented with showing that if the individuals' utilities u t are von Neumann-Morgenstern, and if the given utility u of the social planner is VNM as well, then the Pareto indifference rule implies that u is affine in terms of the ui. We provide a related conclusion by considering u as functionally dependent on the u t , through a suitably restricted "social welfare functional" (u₁,..., un) ↦ u = f (uⁱ,...,un). We claim that this result is more in accordance with contemporary social choice theory than Harsanyi's "single-profile" theorem is. Besides, Harsanyi's initial proof of the latter was faulty. Part II of this paper offers an alternative argument which is intended to be both general and simple enough, contrary to the recent proofs published by Fishburn and others. It finally investigates the affine independence problem on the ui discussed by Fishburn as a corollary to Harsanyi's theorem.</abstract><cop>Berlin, Germany</cop><pub>Springer Science + Business Media</pub><doi>10.1007/BF00295858</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-1714
ispartof Social choice and welfare, 1989-01, Vol.6 (3), p.175-187
issn 0176-1714
1432-217X
language eng
recordid cdi_proquest_miscellaneous_36920997
source Jstor Complete Legacy; SpringerLink Journals - AutoHoldings; Periodicals Index Online
subjects Ambivalence
Axioms
Economic theory
Logical theorems
Lotteries
Mathematical functions
Mathematical theorems
Public choice
Real numbers
Social choice
Social theories
Utility theory
title Social Choice Theory in the Case of Von Neumann-Morgenstern Utilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Choice%20Theory%20in%20the%20Case%20of%20Von%20Neumann-Morgenstern%20Utilities&rft.jtitle=Social%20choice%20and%20welfare&rft.au=Coulhon,%20T.&rft.date=1989-01-01&rft.volume=6&rft.issue=3&rft.spage=175&rft.epage=187&rft.pages=175-187&rft.issn=0176-1714&rft.eissn=1432-217X&rft_id=info:doi/10.1007/BF00295858&rft_dat=%3Cjstor_proqu%3E41105915%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1293450538&rft_id=info:pmid/&rft_jstor_id=41105915&rfr_iscdi=true