INTENSITY-BASED VALUATION OF RESIDENTIAL MORTGAGES: AN ANALYTICALLY TRACTABLE MODEL

This paper presents an analytically tractable valuation model for residential mortgages. The random mortgage prepayment time is assumed to have an intensity process of the form ht=h0(t) +γ (k−rt)+, where h0(t) is a deterministic function of time, rt is the short rate, and γ and k are scalar paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2007-10, Vol.17 (4), p.541-573
Hauptverfasser: Gorovoy, Vyacheslav, Linetsky, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue 4
container_start_page 541
container_title Mathematical finance
container_volume 17
creator Gorovoy, Vyacheslav
Linetsky, Vadim
description This paper presents an analytically tractable valuation model for residential mortgages. The random mortgage prepayment time is assumed to have an intensity process of the form ht=h0(t) +γ (k−rt)+, where h0(t) is a deterministic function of time, rt is the short rate, and γ and k are scalar parameters. The first term models exogenous prepayment independent of interest rates (e.g., a multiple of the PSA prepayment function). The second term models refinancing due to declining interest rates and is proportional to the positive part of the distance between a constant threshold level and the current short rate. When the short rate follows a CIR diffusion, we are able to solve the model analytically and find explicit expressions for the present value of the mortgage contract, its principal‐only and interest‐only parts, as well as their deltas. Mortgage rates at origination are found by solving a non‐linear equation. Our solution method is based on explicitly constructing an eigenfunction expansion of the pricing semigroup, a Feynman‐Kac semigroup of the CIR diffusion killed at an additive functional that is a linear combination of the integral of the CIR process and an area below a constant threshold and above the process sample path (the so‐called area functional). A sensitivity analysis of the term structure of mortgage rates and calibration of the model to market data are presented.
doi_str_mv 10.1111/j.1467-9965.2007.00315.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36904445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1335174981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6545-1f17764693b378db514dc0069df90bfc9d9b4d2b5601de3472b8fd23bce337293</originalsourceid><addsrcrecordid>eNqNkMtu2zAQRYWgBeKm_Qehi-6kkuLLLNAFY8uOAkUGLCapVwM9KESuHDuS3dh_HyoqvOiqBO-QAO8ZDK_juBj52K7vax9TLjwpOfMDhISPEMHMP144o_PDB2eEJEce5oG4dD513RohRCkVIyeNEh0maaRX3rVKw6n7oOJ7paNF4i5m7jJMo2mY6EjF7t1iqedqHqY_XJXYreKVjiYqjleuXqqJVtdxaE3TMP7sfKyypjNf_p5Xzv0s1JMbL17Me8IrOKPMwxUWglMuSU7EuMwZpmWBEJdlJVFeFbKUOS2DnHGES0OoCPJxVQYkLwwhIpDkyvk29N2125eD6fawqbvCNE32bLaHDgiX_S-ZNX79x7jeHtpnOxsExEYh-JhY03gwFe2261pTwa6tN1l7AoygjxrW0CcKfaLQRw3vUcPRorcD2pqdKc5c3mSbbP9U1fAHSIaFLSerd5RktRW12lkxioEJAk_7jW32c2j2Wjfm9N9DwJ2aRfZmeW_g625vjmc-a38DF0QweEzmgGI9u_l1y4CSN6zSpBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230007683</pqid></control><display><type>article</type><title>INTENSITY-BASED VALUATION OF RESIDENTIAL MORTGAGES: AN ANALYTICALLY TRACTABLE MODEL</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Gorovoy, Vyacheslav ; Linetsky, Vadim</creator><creatorcontrib>Gorovoy, Vyacheslav ; Linetsky, Vadim</creatorcontrib><description>This paper presents an analytically tractable valuation model for residential mortgages. The random mortgage prepayment time is assumed to have an intensity process of the form ht=h0(t) +γ (k−rt)+, where h0(t) is a deterministic function of time, rt is the short rate, and γ and k are scalar parameters. The first term models exogenous prepayment independent of interest rates (e.g., a multiple of the PSA prepayment function). The second term models refinancing due to declining interest rates and is proportional to the positive part of the distance between a constant threshold level and the current short rate. When the short rate follows a CIR diffusion, we are able to solve the model analytically and find explicit expressions for the present value of the mortgage contract, its principal‐only and interest‐only parts, as well as their deltas. Mortgage rates at origination are found by solving a non‐linear equation. Our solution method is based on explicitly constructing an eigenfunction expansion of the pricing semigroup, a Feynman‐Kac semigroup of the CIR diffusion killed at an additive functional that is a linear combination of the integral of the CIR process and an area below a constant threshold and above the process sample path (the so‐called area functional). A sensitivity analysis of the term structure of mortgage rates and calibration of the model to market data are presented.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/j.1467-9965.2007.00315.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>area functional ; Asset pricing ; CIR diffusion ; eigenfunction expansion ; Eigenvalues ; hazard process ; Interest rates ; Mathematical finance ; Mathematical models ; mortgage ; Mortgage markets ; Mortgage rates ; Mortgages ; prepayment intensity ; Prepayments ; Pricing ; pricing semigroup ; Refinancing ; Sensitivity analysis ; Studies ; Valuation</subject><ispartof>Mathematical finance, 2007-10, Vol.17 (4), p.541-573</ispartof><rights>2007 The Authors. Journal compilation © 2007 Blackwell Publishing Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6545-1f17764693b378db514dc0069df90bfc9d9b4d2b5601de3472b8fd23bce337293</citedby><cites>FETCH-LOGICAL-c6545-1f17764693b378db514dc0069df90bfc9d9b4d2b5601de3472b8fd23bce337293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9965.2007.00315.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9965.2007.00315.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3993,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a17_3ay_3a2007_3ai_3a4_3ap_3a541-573.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorovoy, Vyacheslav</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><title>INTENSITY-BASED VALUATION OF RESIDENTIAL MORTGAGES: AN ANALYTICALLY TRACTABLE MODEL</title><title>Mathematical finance</title><description>This paper presents an analytically tractable valuation model for residential mortgages. The random mortgage prepayment time is assumed to have an intensity process of the form ht=h0(t) +γ (k−rt)+, where h0(t) is a deterministic function of time, rt is the short rate, and γ and k are scalar parameters. The first term models exogenous prepayment independent of interest rates (e.g., a multiple of the PSA prepayment function). The second term models refinancing due to declining interest rates and is proportional to the positive part of the distance between a constant threshold level and the current short rate. When the short rate follows a CIR diffusion, we are able to solve the model analytically and find explicit expressions for the present value of the mortgage contract, its principal‐only and interest‐only parts, as well as their deltas. Mortgage rates at origination are found by solving a non‐linear equation. Our solution method is based on explicitly constructing an eigenfunction expansion of the pricing semigroup, a Feynman‐Kac semigroup of the CIR diffusion killed at an additive functional that is a linear combination of the integral of the CIR process and an area below a constant threshold and above the process sample path (the so‐called area functional). A sensitivity analysis of the term structure of mortgage rates and calibration of the model to market data are presented.</description><subject>area functional</subject><subject>Asset pricing</subject><subject>CIR diffusion</subject><subject>eigenfunction expansion</subject><subject>Eigenvalues</subject><subject>hazard process</subject><subject>Interest rates</subject><subject>Mathematical finance</subject><subject>Mathematical models</subject><subject>mortgage</subject><subject>Mortgage markets</subject><subject>Mortgage rates</subject><subject>Mortgages</subject><subject>prepayment intensity</subject><subject>Prepayments</subject><subject>Pricing</subject><subject>pricing semigroup</subject><subject>Refinancing</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>Valuation</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkMtu2zAQRYWgBeKm_Qehi-6kkuLLLNAFY8uOAkUGLCapVwM9KESuHDuS3dh_HyoqvOiqBO-QAO8ZDK_juBj52K7vax9TLjwpOfMDhISPEMHMP144o_PDB2eEJEce5oG4dD513RohRCkVIyeNEh0maaRX3rVKw6n7oOJ7paNF4i5m7jJMo2mY6EjF7t1iqedqHqY_XJXYreKVjiYqjleuXqqJVtdxaE3TMP7sfKyypjNf_p5Xzv0s1JMbL17Me8IrOKPMwxUWglMuSU7EuMwZpmWBEJdlJVFeFbKUOS2DnHGES0OoCPJxVQYkLwwhIpDkyvk29N2125eD6fawqbvCNE32bLaHDgiX_S-ZNX79x7jeHtpnOxsExEYh-JhY03gwFe2261pTwa6tN1l7AoygjxrW0CcKfaLQRw3vUcPRorcD2pqdKc5c3mSbbP9U1fAHSIaFLSerd5RktRW12lkxioEJAk_7jW32c2j2Wjfm9N9DwJ2aRfZmeW_g625vjmc-a38DF0QweEzmgGI9u_l1y4CSN6zSpBo</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Gorovoy, Vyacheslav</creator><creator>Linetsky, Vadim</creator><general>Blackwell Publishing Inc</general><general>Wiley Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200710</creationdate><title>INTENSITY-BASED VALUATION OF RESIDENTIAL MORTGAGES: AN ANALYTICALLY TRACTABLE MODEL</title><author>Gorovoy, Vyacheslav ; Linetsky, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6545-1f17764693b378db514dc0069df90bfc9d9b4d2b5601de3472b8fd23bce337293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>area functional</topic><topic>Asset pricing</topic><topic>CIR diffusion</topic><topic>eigenfunction expansion</topic><topic>Eigenvalues</topic><topic>hazard process</topic><topic>Interest rates</topic><topic>Mathematical finance</topic><topic>Mathematical models</topic><topic>mortgage</topic><topic>Mortgage markets</topic><topic>Mortgage rates</topic><topic>Mortgages</topic><topic>prepayment intensity</topic><topic>Prepayments</topic><topic>Pricing</topic><topic>pricing semigroup</topic><topic>Refinancing</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorovoy, Vyacheslav</creatorcontrib><creatorcontrib>Linetsky, Vadim</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorovoy, Vyacheslav</au><au>Linetsky, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INTENSITY-BASED VALUATION OF RESIDENTIAL MORTGAGES: AN ANALYTICALLY TRACTABLE MODEL</atitle><jtitle>Mathematical finance</jtitle><date>2007-10</date><risdate>2007</risdate><volume>17</volume><issue>4</issue><spage>541</spage><epage>573</epage><pages>541-573</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>This paper presents an analytically tractable valuation model for residential mortgages. The random mortgage prepayment time is assumed to have an intensity process of the form ht=h0(t) +γ (k−rt)+, where h0(t) is a deterministic function of time, rt is the short rate, and γ and k are scalar parameters. The first term models exogenous prepayment independent of interest rates (e.g., a multiple of the PSA prepayment function). The second term models refinancing due to declining interest rates and is proportional to the positive part of the distance between a constant threshold level and the current short rate. When the short rate follows a CIR diffusion, we are able to solve the model analytically and find explicit expressions for the present value of the mortgage contract, its principal‐only and interest‐only parts, as well as their deltas. Mortgage rates at origination are found by solving a non‐linear equation. Our solution method is based on explicitly constructing an eigenfunction expansion of the pricing semigroup, a Feynman‐Kac semigroup of the CIR diffusion killed at an additive functional that is a linear combination of the integral of the CIR process and an area below a constant threshold and above the process sample path (the so‐called area functional). A sensitivity analysis of the term structure of mortgage rates and calibration of the model to market data are presented.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1467-9965.2007.00315.x</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2007-10, Vol.17 (4), p.541-573
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_miscellaneous_36904445
source RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects area functional
Asset pricing
CIR diffusion
eigenfunction expansion
Eigenvalues
hazard process
Interest rates
Mathematical finance
Mathematical models
mortgage
Mortgage markets
Mortgage rates
Mortgages
prepayment intensity
Prepayments
Pricing
pricing semigroup
Refinancing
Sensitivity analysis
Studies
Valuation
title INTENSITY-BASED VALUATION OF RESIDENTIAL MORTGAGES: AN ANALYTICALLY TRACTABLE MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INTENSITY-BASED%20VALUATION%20OF%20RESIDENTIAL%20MORTGAGES:%20AN%20ANALYTICALLY%20TRACTABLE%20MODEL&rft.jtitle=Mathematical%20finance&rft.au=Gorovoy,%20Vyacheslav&rft.date=2007-10&rft.volume=17&rft.issue=4&rft.spage=541&rft.epage=573&rft.pages=541-573&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/j.1467-9965.2007.00315.x&rft_dat=%3Cproquest_cross%3E1335174981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230007683&rft_id=info:pmid/&rfr_iscdi=true