Cores of convex and strictly convex games

We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Games and economic behavior 2008, Vol.62 (1), p.100-105
Hauptverfasser: González-Díaz, Julio, Sánchez-Rodríguez, Estela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 100
container_title Games and economic behavior
container_volume 62
creator González-Díaz, Julio
Sánchez-Rodríguez, Estela
description We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.
doi_str_mv 10.1016/j.geb.2007.03.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36805236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825607000395</els_id><sourcerecordid>1416489391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMIPYKsYkBgSnu18OGJCFZ-qxAKz5TgvxVGbFDut6L_nRQEGBobzSdbdvdMxds4h5sCz6yZeYhkLgDwGGQPIAzbhUEAkklwesgmoooiUSLNjdhJCAwCpyGHCruadxzDr6pnt2h1-zkxbzULvne1X-5-_pVljOGVHtVkFPPvmKXu7v3udP0aLl4en-e0ispTY0w1hVCZlmfIk5TI3qlS5LCtVZliYBGuDykrDjYEKpQCVpUrmohKAVV1ylFN2OeZufPexxdDrtQsWVyvTYrcNWmaKusuMhBd_hE239S1107zIuZIiT0jER5H1XQgea73xbm38XnPQw3K60bScHpbTIDUtR57n0eNxg_bXgIjDECXqnZYmE_TsCeRURI7ACZuBYchO9Xu_prCbMQxps51Dr4N12FqsnEfb66pz_1T5Alp1jRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197183274</pqid></control><display><type>article</type><title>Cores of convex and strictly convex games</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>González-Díaz, Julio ; Sánchez-Rodríguez, Estela</creator><creatorcontrib>González-Díaz, Julio ; Sánchez-Rodríguez, Estela</creatorcontrib><description>We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1016/j.geb.2007.03.003</identifier><language>eng</language><publisher>Duluth: Elsevier Inc</publisher><subject>Combinatorial complexity ; Convex games ; Cooperation ; Cooperative TU games ; Game theory ; Geometry ; Pascal's triangle ; Regression analysis ; Studies</subject><ispartof>Games and economic behavior, 2008, Vol.62 (1), p.100-105</ispartof><rights>2007 Elsevier Inc.</rights><rights>Copyright Academic Press Jan 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</citedby><cites>FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geb.2007.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4005,4021,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeegamebe/v_3a62_3ay_3a2008_3ai_3a1_3ap_3a100-105.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Díaz, Julio</creatorcontrib><creatorcontrib>Sánchez-Rodríguez, Estela</creatorcontrib><title>Cores of convex and strictly convex games</title><title>Games and economic behavior</title><description>We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.</description><subject>Combinatorial complexity</subject><subject>Convex games</subject><subject>Cooperation</subject><subject>Cooperative TU games</subject><subject>Game theory</subject><subject>Geometry</subject><subject>Pascal's triangle</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UD1PwzAUtBBIlMIPYKsYkBgSnu18OGJCFZ-qxAKz5TgvxVGbFDut6L_nRQEGBobzSdbdvdMxds4h5sCz6yZeYhkLgDwGGQPIAzbhUEAkklwesgmoooiUSLNjdhJCAwCpyGHCruadxzDr6pnt2h1-zkxbzULvne1X-5-_pVljOGVHtVkFPPvmKXu7v3udP0aLl4en-e0ispTY0w1hVCZlmfIk5TI3qlS5LCtVZliYBGuDykrDjYEKpQCVpUrmohKAVV1ylFN2OeZufPexxdDrtQsWVyvTYrcNWmaKusuMhBd_hE239S1107zIuZIiT0jER5H1XQgea73xbm38XnPQw3K60bScHpbTIDUtR57n0eNxg_bXgIjDECXqnZYmE_TsCeRURI7ACZuBYchO9Xu_prCbMQxps51Dr4N12FqsnEfb66pz_1T5Alp1jRQ</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>González-Díaz, Julio</creator><creator>Sánchez-Rodríguez, Estela</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2008</creationdate><title>Cores of convex and strictly convex games</title><author>González-Díaz, Julio ; Sánchez-Rodríguez, Estela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Combinatorial complexity</topic><topic>Convex games</topic><topic>Cooperation</topic><topic>Cooperative TU games</topic><topic>Game theory</topic><topic>Geometry</topic><topic>Pascal's triangle</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Díaz, Julio</creatorcontrib><creatorcontrib>Sánchez-Rodríguez, Estela</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Díaz, Julio</au><au>Sánchez-Rodríguez, Estela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cores of convex and strictly convex games</atitle><jtitle>Games and economic behavior</jtitle><date>2008</date><risdate>2008</risdate><volume>62</volume><issue>1</issue><spage>100</spage><epage>105</epage><pages>100-105</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.</abstract><cop>Duluth</cop><pub>Elsevier Inc</pub><doi>10.1016/j.geb.2007.03.003</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-8256
ispartof Games and economic behavior, 2008, Vol.62 (1), p.100-105
issn 0899-8256
1090-2473
language eng
recordid cdi_proquest_miscellaneous_36805236
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Combinatorial complexity
Convex games
Cooperation
Cooperative TU games
Game theory
Geometry
Pascal's triangle
Regression analysis
Studies
title Cores of convex and strictly convex games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cores%20of%20convex%20and%20strictly%20convex%20games&rft.jtitle=Games%20and%20economic%20behavior&rft.au=Gonz%C3%A1lez-D%C3%ADaz,%20Julio&rft.date=2008&rft.volume=62&rft.issue=1&rft.spage=100&rft.epage=105&rft.pages=100-105&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1016/j.geb.2007.03.003&rft_dat=%3Cproquest_cross%3E1416489391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197183274&rft_id=info:pmid/&rft_els_id=S0899825607000395&rfr_iscdi=true