Cores of convex and strictly convex games
We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our res...
Gespeichert in:
Veröffentlicht in: | Games and economic behavior 2008, Vol.62 (1), p.100-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 100 |
container_title | Games and economic behavior |
container_volume | 62 |
creator | González-Díaz, Julio Sánchez-Rodríguez, Estela |
description | We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call
face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle. |
doi_str_mv | 10.1016/j.geb.2007.03.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36805236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825607000395</els_id><sourcerecordid>1416489391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMIPYKsYkBgSnu18OGJCFZ-qxAKz5TgvxVGbFDut6L_nRQEGBobzSdbdvdMxds4h5sCz6yZeYhkLgDwGGQPIAzbhUEAkklwesgmoooiUSLNjdhJCAwCpyGHCruadxzDr6pnt2h1-zkxbzULvne1X-5-_pVljOGVHtVkFPPvmKXu7v3udP0aLl4en-e0ispTY0w1hVCZlmfIk5TI3qlS5LCtVZliYBGuDykrDjYEKpQCVpUrmohKAVV1ylFN2OeZufPexxdDrtQsWVyvTYrcNWmaKusuMhBd_hE239S1107zIuZIiT0jER5H1XQgea73xbm38XnPQw3K60bScHpbTIDUtR57n0eNxg_bXgIjDECXqnZYmE_TsCeRURI7ACZuBYchO9Xu_prCbMQxps51Dr4N12FqsnEfb66pz_1T5Alp1jRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197183274</pqid></control><display><type>article</type><title>Cores of convex and strictly convex games</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>González-Díaz, Julio ; Sánchez-Rodríguez, Estela</creator><creatorcontrib>González-Díaz, Julio ; Sánchez-Rodríguez, Estela</creatorcontrib><description>We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call
face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1016/j.geb.2007.03.003</identifier><language>eng</language><publisher>Duluth: Elsevier Inc</publisher><subject>Combinatorial complexity ; Convex games ; Cooperation ; Cooperative TU games ; Game theory ; Geometry ; Pascal's triangle ; Regression analysis ; Studies</subject><ispartof>Games and economic behavior, 2008, Vol.62 (1), p.100-105</ispartof><rights>2007 Elsevier Inc.</rights><rights>Copyright Academic Press Jan 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</citedby><cites>FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geb.2007.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4005,4021,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeegamebe/v_3a62_3ay_3a2008_3ai_3a1_3ap_3a100-105.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Díaz, Julio</creatorcontrib><creatorcontrib>Sánchez-Rodríguez, Estela</creatorcontrib><title>Cores of convex and strictly convex games</title><title>Games and economic behavior</title><description>We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call
face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.</description><subject>Combinatorial complexity</subject><subject>Convex games</subject><subject>Cooperation</subject><subject>Cooperative TU games</subject><subject>Game theory</subject><subject>Geometry</subject><subject>Pascal's triangle</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UD1PwzAUtBBIlMIPYKsYkBgSnu18OGJCFZ-qxAKz5TgvxVGbFDut6L_nRQEGBobzSdbdvdMxds4h5sCz6yZeYhkLgDwGGQPIAzbhUEAkklwesgmoooiUSLNjdhJCAwCpyGHCruadxzDr6pnt2h1-zkxbzULvne1X-5-_pVljOGVHtVkFPPvmKXu7v3udP0aLl4en-e0ispTY0w1hVCZlmfIk5TI3qlS5LCtVZliYBGuDykrDjYEKpQCVpUrmohKAVV1ylFN2OeZufPexxdDrtQsWVyvTYrcNWmaKusuMhBd_hE239S1107zIuZIiT0jER5H1XQgea73xbm38XnPQw3K60bScHpbTIDUtR57n0eNxg_bXgIjDECXqnZYmE_TsCeRURI7ACZuBYchO9Xu_prCbMQxps51Dr4N12FqsnEfb66pz_1T5Alp1jRQ</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>González-Díaz, Julio</creator><creator>Sánchez-Rodríguez, Estela</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2008</creationdate><title>Cores of convex and strictly convex games</title><author>González-Díaz, Julio ; Sánchez-Rodríguez, Estela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-822a8633b5145137a8b873bd8b6e9a4efae8c3a1aa0de3208658372d20edfb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Combinatorial complexity</topic><topic>Convex games</topic><topic>Cooperation</topic><topic>Cooperative TU games</topic><topic>Game theory</topic><topic>Geometry</topic><topic>Pascal's triangle</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Díaz, Julio</creatorcontrib><creatorcontrib>Sánchez-Rodríguez, Estela</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Díaz, Julio</au><au>Sánchez-Rodríguez, Estela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cores of convex and strictly convex games</atitle><jtitle>Games and economic behavior</jtitle><date>2008</date><risdate>2008</risdate><volume>62</volume><issue>1</issue><spage>100</spage><epage>105</epage><pages>100-105</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>We follow the path initiated by Shapley in 1971 and study the geometry of the core of convex and strictly convex games. We define what we call
face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal's triangle.</abstract><cop>Duluth</cop><pub>Elsevier Inc</pub><doi>10.1016/j.geb.2007.03.003</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8256 |
ispartof | Games and economic behavior, 2008, Vol.62 (1), p.100-105 |
issn | 0899-8256 1090-2473 |
language | eng |
recordid | cdi_proquest_miscellaneous_36805236 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | Combinatorial complexity Convex games Cooperation Cooperative TU games Game theory Geometry Pascal's triangle Regression analysis Studies |
title | Cores of convex and strictly convex games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cores%20of%20convex%20and%20strictly%20convex%20games&rft.jtitle=Games%20and%20economic%20behavior&rft.au=Gonz%C3%A1lez-D%C3%ADaz,%20Julio&rft.date=2008&rft.volume=62&rft.issue=1&rft.spage=100&rft.epage=105&rft.pages=100-105&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1016/j.geb.2007.03.003&rft_dat=%3Cproquest_cross%3E1416489391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197183274&rft_id=info:pmid/&rft_els_id=S0899825607000395&rfr_iscdi=true |