Bertrand games and sharing rules

We consider asymmetric Bertrand games with arbitrary payoffs at ties or sharing rules, and identify sufficient conditions for the zero-profit outcome and the existence of Nash equilibria. Subject to some technical conditions on non-tied payoffs the following hold. If the sharing rule is strictly tie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economic theory 2007-06, Vol.31 (3), p.573-585
1. Verfasser: Hoernig, Steffen H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 3
container_start_page 573
container_title Economic theory
container_volume 31
creator Hoernig, Steffen H.
description We consider asymmetric Bertrand games with arbitrary payoffs at ties or sharing rules, and identify sufficient conditions for the zero-profit outcome and the existence of Nash equilibria. Subject to some technical conditions on non-tied payoffs the following hold. If the sharing rule is strictly tie-decreasing all players but one receive zero equilibrium payoffs, while everybody does so if non-tied payoffs are symmetric. Mixed (pure) strategy Nash equilibria exist if the sharing rule is (norm) tie-decreasing and coalition-monotone.
doi_str_mv 10.1007/s00199-006-0112-8
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36719259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27822537</jstor_id><sourcerecordid>27822537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ce6aa533770c7d74f2ae01fe1983fb4649af30ee076e05aadf84d9e84db92ba63</originalsourceid><addsrcrecordid>eNpdkDtPxDAQhC0EEsfBD6BAiijoDOtH_CjhxEs6iQZqy0nWx51yyWEnBf8eR0EUNDtbzIxGHyGXDG4ZgL5LAMxaCqAoMMapOSILJgWnILU9JguwwlDOS3tKzlLaAUBZKrMgxQPGIfquKTZ-j6mYvvTp47bbFHFsMZ2Tk-DbhBe_uiQfT4_vqxe6fnt-Xd2vaS2MHmiNyvtSCK2h1o2WgXsEFpBZI0IllbQ-CEAErRBK75tgZGMxn8ryyiuxJDdz7yH2XyOmwe23qca29R32Y3JCaWbz_my8_mfc9WPs8jbHuWQlMDG1sdlUxz6liMEd4nbv47dj4CZgbgbmMjA3AXMmZ67mzC4NffwLcG0yN6HFD35kZeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224150136</pqid></control><display><type>article</type><title>Bertrand games and sharing rules</title><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hoernig, Steffen H.</creator><creatorcontrib>Hoernig, Steffen H.</creatorcontrib><description>We consider asymmetric Bertrand games with arbitrary payoffs at ties or sharing rules, and identify sufficient conditions for the zero-profit outcome and the existence of Nash equilibria. Subject to some technical conditions on non-tied payoffs the following hold. If the sharing rule is strictly tie-decreasing all players but one receive zero equilibrium payoffs, while everybody does so if non-tied payoffs are symmetric. Mixed (pure) strategy Nash equilibria exist if the sharing rule is (norm) tie-decreasing and coalition-monotone.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-006-0112-8</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Constant returns to scale ; Decreasing returns ; Duopolies ; Economic models ; Economic theory ; Equilibrium ; Equilibrium existence conditions ; Game theory ; Games ; Imperfect competition ; Industrial organization ; Marginal costs ; Mixed strategy ; Nash equilibrium ; Oligopolies ; Oligopoly ; Payoffs ; Profit sharing ; Studies ; Urelements</subject><ispartof>Economic theory, 2007-06, Vol.31 (3), p.573-585</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ce6aa533770c7d74f2ae01fe1983fb4649af30ee076e05aadf84d9e84db92ba63</citedby><cites>FETCH-LOGICAL-c387t-ce6aa533770c7d74f2ae01fe1983fb4649af30ee076e05aadf84d9e84db92ba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27822537$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27822537$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Hoernig, Steffen H.</creatorcontrib><title>Bertrand games and sharing rules</title><title>Economic theory</title><description>We consider asymmetric Bertrand games with arbitrary payoffs at ties or sharing rules, and identify sufficient conditions for the zero-profit outcome and the existence of Nash equilibria. Subject to some technical conditions on non-tied payoffs the following hold. If the sharing rule is strictly tie-decreasing all players but one receive zero equilibrium payoffs, while everybody does so if non-tied payoffs are symmetric. Mixed (pure) strategy Nash equilibria exist if the sharing rule is (norm) tie-decreasing and coalition-monotone.</description><subject>Constant returns to scale</subject><subject>Decreasing returns</subject><subject>Duopolies</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Equilibrium</subject><subject>Equilibrium existence conditions</subject><subject>Game theory</subject><subject>Games</subject><subject>Imperfect competition</subject><subject>Industrial organization</subject><subject>Marginal costs</subject><subject>Mixed strategy</subject><subject>Nash equilibrium</subject><subject>Oligopolies</subject><subject>Oligopoly</subject><subject>Payoffs</subject><subject>Profit sharing</subject><subject>Studies</subject><subject>Urelements</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDtPxDAQhC0EEsfBD6BAiijoDOtH_CjhxEs6iQZqy0nWx51yyWEnBf8eR0EUNDtbzIxGHyGXDG4ZgL5LAMxaCqAoMMapOSILJgWnILU9JguwwlDOS3tKzlLaAUBZKrMgxQPGIfquKTZ-j6mYvvTp47bbFHFsMZ2Tk-DbhBe_uiQfT4_vqxe6fnt-Xd2vaS2MHmiNyvtSCK2h1o2WgXsEFpBZI0IllbQ-CEAErRBK75tgZGMxn8ryyiuxJDdz7yH2XyOmwe23qca29R32Y3JCaWbz_my8_mfc9WPs8jbHuWQlMDG1sdlUxz6liMEd4nbv47dj4CZgbgbmMjA3AXMmZ67mzC4NffwLcG0yN6HFD35kZeo</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Hoernig, Steffen H.</creator><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20070601</creationdate><title>Bertrand games and sharing rules</title><author>Hoernig, Steffen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ce6aa533770c7d74f2ae01fe1983fb4649af30ee076e05aadf84d9e84db92ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Constant returns to scale</topic><topic>Decreasing returns</topic><topic>Duopolies</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Equilibrium</topic><topic>Equilibrium existence conditions</topic><topic>Game theory</topic><topic>Games</topic><topic>Imperfect competition</topic><topic>Industrial organization</topic><topic>Marginal costs</topic><topic>Mixed strategy</topic><topic>Nash equilibrium</topic><topic>Oligopolies</topic><topic>Oligopoly</topic><topic>Payoffs</topic><topic>Profit sharing</topic><topic>Studies</topic><topic>Urelements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoernig, Steffen H.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoernig, Steffen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bertrand games and sharing rules</atitle><jtitle>Economic theory</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>31</volume><issue>3</issue><spage>573</spage><epage>585</epage><pages>573-585</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>We consider asymmetric Bertrand games with arbitrary payoffs at ties or sharing rules, and identify sufficient conditions for the zero-profit outcome and the existence of Nash equilibria. Subject to some technical conditions on non-tied payoffs the following hold. If the sharing rule is strictly tie-decreasing all players but one receive zero equilibrium payoffs, while everybody does so if non-tied payoffs are symmetric. Mixed (pure) strategy Nash equilibria exist if the sharing rule is (norm) tie-decreasing and coalition-monotone.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00199-006-0112-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-2259
ispartof Economic theory, 2007-06, Vol.31 (3), p.573-585
issn 0938-2259
1432-0479
language eng
recordid cdi_proquest_miscellaneous_36719259
source Business Source Complete; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Constant returns to scale
Decreasing returns
Duopolies
Economic models
Economic theory
Equilibrium
Equilibrium existence conditions
Game theory
Games
Imperfect competition
Industrial organization
Marginal costs
Mixed strategy
Nash equilibrium
Oligopolies
Oligopoly
Payoffs
Profit sharing
Studies
Urelements
title Bertrand games and sharing rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bertrand%20games%20and%20sharing%20rules&rft.jtitle=Economic%20theory&rft.au=Hoernig,%20Steffen%20H.&rft.date=2007-06-01&rft.volume=31&rft.issue=3&rft.spage=573&rft.epage=585&rft.pages=573-585&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-006-0112-8&rft_dat=%3Cjstor_proqu%3E27822537%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224150136&rft_id=info:pmid/&rft_jstor_id=27822537&rfr_iscdi=true