A Class of Antipersistent Processes

.  We introduce a class of stationary processes characterized by the behaviour of their infinite moving average parameters. We establish the asymptotic behaviour of the covariance function and the behaviour around zero of the spectral density of these processes, showing their antipersistent characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2007-03, Vol.28 (2), p.261-273
Hauptverfasser: Bondon, Pascal, Palma, Wilfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 2
container_start_page 261
container_title Journal of time series analysis
container_volume 28
creator Bondon, Pascal
Palma, Wilfredo
description .  We introduce a class of stationary processes characterized by the behaviour of their infinite moving average parameters. We establish the asymptotic behaviour of the covariance function and the behaviour around zero of the spectral density of these processes, showing their antipersistent character. Then, we discuss the existence of an infinite autoregressive representation for this family of processes, and we present some consequences for fractional autoregressive moving average models.
doi_str_mv 10.1111/j.1467-9892.2006.00509.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36717330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36717330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5929-6090667f4a3c9872d0a3d00fd66c22da870f0bba9ca2d7b75728490edca370e03</originalsourceid><addsrcrecordid>eNqNUcGO0zAUtBBIlIV_iEDilvBsJ37xgUMpsLBawUosy_HJdRyRkDZZO4X277EJ6oETlp5nJM-MnsaMZRwKHs-rvuClwlzXWhQCQBUAFeji-ICtzg8P2Qp4KXONtXjMnoTQA3BVIl-xF-tsM5gQsrHN1vu5m5wPXZjdfs5u_GhdCC48ZY9aMwT37C9esK_v391uPuTXny8_btbXua200LkCDUphWxppdY2iASMbgLZRygrRmBqhhe3WaGtEg1usUNSlBtdYIxEcyAv2csmd_Hh_cGGmXResGwazd-MhkFTIUcokfP6PsB8Pfh93IwFCS1GWVRTVi8j6MQTvWpp8tzP-RBwoVUc9pYYoNUSpOvpTHR2j9Wqxejc5e_ZtB9PPwXlDP0kaUcfrlAgARugSjTMlVJwESvo-72LY6yXsVze4038vQVe3X9aRRX---NO3HM9-43-QQokVfft0SfKuvnuj3yLdyN_bNpp_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>202932445</pqid></control><display><type>article</type><title>A Class of Antipersistent Processes</title><source>Access via Wiley Online Library</source><source>RePEc</source><creator>Bondon, Pascal ; Palma, Wilfredo</creator><creatorcontrib>Bondon, Pascal ; Palma, Wilfredo</creatorcontrib><description>.  We introduce a class of stationary processes characterized by the behaviour of their infinite moving average parameters. We establish the asymptotic behaviour of the covariance function and the behaviour around zero of the spectral density of these processes, showing their antipersistent character. Then, we discuss the existence of an infinite autoregressive representation for this family of processes, and we present some consequences for fractional autoregressive moving average models.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/j.1467-9892.2006.00509.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Antipersistent process ; Asymptotic methods ; autoregressive expansion ; Density ; Econometrics ; FARIMA process ; Mathematical analysis ; moving average parameters ; Primary 62M10 ; secondary 60G25 ; Statistical methods ; Stochastic processes ; Studies ; Time series</subject><ispartof>Journal of time series analysis, 2007-03, Vol.28 (2), p.261-273</ispartof><rights>2007 The Authors Journal compilation 2007 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5929-6090667f4a3c9872d0a3d00fd66c22da870f0bba9ca2d7b75728490edca370e03</citedby><cites>FETCH-LOGICAL-c5929-6090667f4a3c9872d0a3d00fd66c22da870f0bba9ca2d7b75728490edca370e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-9892.2006.00509.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-9892.2006.00509.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4008,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajtsera/v_3a28_3ay_3a2007_3ai_3a2_3ap_3a261-273.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondon, Pascal</creatorcontrib><creatorcontrib>Palma, Wilfredo</creatorcontrib><title>A Class of Antipersistent Processes</title><title>Journal of time series analysis</title><description>.  We introduce a class of stationary processes characterized by the behaviour of their infinite moving average parameters. We establish the asymptotic behaviour of the covariance function and the behaviour around zero of the spectral density of these processes, showing their antipersistent character. Then, we discuss the existence of an infinite autoregressive representation for this family of processes, and we present some consequences for fractional autoregressive moving average models.</description><subject>Antipersistent process</subject><subject>Asymptotic methods</subject><subject>autoregressive expansion</subject><subject>Density</subject><subject>Econometrics</subject><subject>FARIMA process</subject><subject>Mathematical analysis</subject><subject>moving average parameters</subject><subject>Primary 62M10</subject><subject>secondary 60G25</subject><subject>Statistical methods</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUcGO0zAUtBBIlIV_iEDilvBsJ37xgUMpsLBawUosy_HJdRyRkDZZO4X277EJ6oETlp5nJM-MnsaMZRwKHs-rvuClwlzXWhQCQBUAFeji-ICtzg8P2Qp4KXONtXjMnoTQA3BVIl-xF-tsM5gQsrHN1vu5m5wPXZjdfs5u_GhdCC48ZY9aMwT37C9esK_v391uPuTXny8_btbXua200LkCDUphWxppdY2iASMbgLZRygrRmBqhhe3WaGtEg1usUNSlBtdYIxEcyAv2csmd_Hh_cGGmXResGwazd-MhkFTIUcokfP6PsB8Pfh93IwFCS1GWVRTVi8j6MQTvWpp8tzP-RBwoVUc9pYYoNUSpOvpTHR2j9Wqxejc5e_ZtB9PPwXlDP0kaUcfrlAgARugSjTMlVJwESvo-72LY6yXsVze4038vQVe3X9aRRX---NO3HM9-43-QQokVfft0SfKuvnuj3yLdyN_bNpp_</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Bondon, Pascal</creator><creator>Palma, Wilfredo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200703</creationdate><title>A Class of Antipersistent Processes</title><author>Bondon, Pascal ; Palma, Wilfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5929-6090667f4a3c9872d0a3d00fd66c22da870f0bba9ca2d7b75728490edca370e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Antipersistent process</topic><topic>Asymptotic methods</topic><topic>autoregressive expansion</topic><topic>Density</topic><topic>Econometrics</topic><topic>FARIMA process</topic><topic>Mathematical analysis</topic><topic>moving average parameters</topic><topic>Primary 62M10</topic><topic>secondary 60G25</topic><topic>Statistical methods</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondon, Pascal</creatorcontrib><creatorcontrib>Palma, Wilfredo</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondon, Pascal</au><au>Palma, Wilfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Class of Antipersistent Processes</atitle><jtitle>Journal of time series analysis</jtitle><date>2007-03</date><risdate>2007</risdate><volume>28</volume><issue>2</issue><spage>261</spage><epage>273</epage><pages>261-273</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>.  We introduce a class of stationary processes characterized by the behaviour of their infinite moving average parameters. We establish the asymptotic behaviour of the covariance function and the behaviour around zero of the spectral density of these processes, showing their antipersistent character. Then, we discuss the existence of an infinite autoregressive representation for this family of processes, and we present some consequences for fractional autoregressive moving average models.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9892.2006.00509.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2007-03, Vol.28 (2), p.261-273
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_miscellaneous_36717330
source Access via Wiley Online Library; RePEc
subjects Antipersistent process
Asymptotic methods
autoregressive expansion
Density
Econometrics
FARIMA process
Mathematical analysis
moving average parameters
Primary 62M10
secondary 60G25
Statistical methods
Stochastic processes
Studies
Time series
title A Class of Antipersistent Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Class%20of%20Antipersistent%20Processes&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Bondon,%20Pascal&rft.date=2007-03&rft.volume=28&rft.issue=2&rft.spage=261&rft.epage=273&rft.pages=261-273&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/j.1467-9892.2006.00509.x&rft_dat=%3Cproquest_cross%3E36717330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=202932445&rft_id=info:pmid/&rfr_iscdi=true