Semi-nonparametric competing risks analysis of recidivism

In this paper we specify a semi-nonparametric competing risks (SNP-CR) model of recidivism, for misdemeanors and felonies. The model is a bivariate mixed proportional hazard model with Weibull baseline hazards and common unobserved heterogeneity. The distribution of the latter is modeled semi-nonpar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2007-08, Vol.22 (5), p.971-993
Hauptverfasser: Bierens, Herman J., Carvalho, Jose R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 5
container_start_page 971
container_title Journal of applied econometrics (Chichester, England)
container_volume 22
creator Bierens, Herman J.
Carvalho, Jose R.
description In this paper we specify a semi-nonparametric competing risks (SNP-CR) model of recidivism, for misdemeanors and felonies. The model is a bivariate mixed proportional hazard model with Weibull baseline hazards and common unobserved heterogeneity. The distribution of the latter is modeled semi-nonparametrically, using orthonormal Legendre polynomials on the unit interval, and integrated out to make the two durations dependent, conditional on the covariates. The SNP-CR model involved corresponds to a Logit model for felony arrest; hence the validity of the SNP-CR model can be tested by testing the validity of the implied Logit model. The latter will be done by using the integrated conditional moment (ICM) test. In the first instance we have estimated and tested two versions of the SNP-CR model, without and with fixed state effects. However, the ICM test rejects these models. Therefore, we have estimated and tested the model for each state separately. These state models are not rejected by the ICM test. Indeed, the estimation results vary substantially per state.
doi_str_mv 10.1002/jae.960
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36694857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25146557</jstor_id><sourcerecordid>25146557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5050-b7ff54bc7ddb488b04230eb9fc3952d6e7613265e976a593d57a33d48187663</originalsourceid><addsrcrecordid>eNqF0MtKw0AUBuBBFKxVfAIhuNCFpM59MstSarwURSrobpgkE5k0lzqTqn17UyNdCOLqLM7Hfzg_AMcIjhCE-LLQZiQ53AEDBKUMEWZsFwxgFJFQYIb3wYH3BYSQQygGQM5NZcO6qZfa6cq0zqZB2lRL09r6NXDWL3yga12uvfVBkwfOpDaz79ZXh2Av16U3Rz9zCOZX06fJdTh7iG8m41mYMshgmIg8ZzRJRZYlNIoSSDGBJpF5SiTDGTeCI4I5M1JwzSTJmNCEZDRCkeCcDMFZn7p0zdvK-FZV1qemLHVtmpVXhHNJIyb-hUgKJqSQHTz9BYtm5boXvcLdTUYJ2qSd9yh1jffO5GrpbKXdWiGoNjWrrmbV1dzJi15-2NKs_2Lqdjzt9UmvC982bqsxQ5Sz7y_Cfm99az63e-0WigsimHq-j9WjFDG9E7F6IV9SkJSV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218754317</pqid></control><display><type>article</type><title>Semi-nonparametric competing risks analysis of recidivism</title><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bierens, Herman J. ; Carvalho, Jose R.</creator><creatorcontrib>Bierens, Herman J. ; Carvalho, Jose R.</creatorcontrib><description>In this paper we specify a semi-nonparametric competing risks (SNP-CR) model of recidivism, for misdemeanors and felonies. The model is a bivariate mixed proportional hazard model with Weibull baseline hazards and common unobserved heterogeneity. The distribution of the latter is modeled semi-nonparametrically, using orthonormal Legendre polynomials on the unit interval, and integrated out to make the two durations dependent, conditional on the covariates. The SNP-CR model involved corresponds to a Logit model for felony arrest; hence the validity of the SNP-CR model can be tested by testing the validity of the implied Logit model. The latter will be done by using the integrated conditional moment (ICM) test. In the first instance we have estimated and tested two versions of the SNP-CR model, without and with fixed state effects. However, the ICM test rejects these models. Therefore, we have estimated and tested the model for each state separately. These state models are not rejected by the ICM test. Indeed, the estimation results vary substantially per state.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.960</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Criminal arrests ; Criminology ; Datasets ; Econometric models ; Economic models ; Federal states ; Felony offenses ; Forecasts ; Misdemeanor offenses ; P values ; Parametric models ; Parole ; Polynomials ; Prisoners ; Recidivism ; Risk analysis ; Risk assessment ; Risk management ; Statistical models ; Studies ; U.S.A</subject><ispartof>Journal of applied econometrics (Chichester, England), 2007-08, Vol.22 (5), p.971-993</ispartof><rights>Copyright 2007 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Aug 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5050-b7ff54bc7ddb488b04230eb9fc3952d6e7613265e976a593d57a33d48187663</citedby><cites>FETCH-LOGICAL-c5050-b7ff54bc7ddb488b04230eb9fc3952d6e7613265e976a593d57a33d48187663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25146557$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25146557$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,1419,27933,27934,45583,45584,58026,58259</link.rule.ids></links><search><creatorcontrib>Bierens, Herman J.</creatorcontrib><creatorcontrib>Carvalho, Jose R.</creatorcontrib><title>Semi-nonparametric competing risks analysis of recidivism</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>In this paper we specify a semi-nonparametric competing risks (SNP-CR) model of recidivism, for misdemeanors and felonies. The model is a bivariate mixed proportional hazard model with Weibull baseline hazards and common unobserved heterogeneity. The distribution of the latter is modeled semi-nonparametrically, using orthonormal Legendre polynomials on the unit interval, and integrated out to make the two durations dependent, conditional on the covariates. The SNP-CR model involved corresponds to a Logit model for felony arrest; hence the validity of the SNP-CR model can be tested by testing the validity of the implied Logit model. The latter will be done by using the integrated conditional moment (ICM) test. In the first instance we have estimated and tested two versions of the SNP-CR model, without and with fixed state effects. However, the ICM test rejects these models. Therefore, we have estimated and tested the model for each state separately. These state models are not rejected by the ICM test. Indeed, the estimation results vary substantially per state.</description><subject>Criminal arrests</subject><subject>Criminology</subject><subject>Datasets</subject><subject>Econometric models</subject><subject>Economic models</subject><subject>Federal states</subject><subject>Felony offenses</subject><subject>Forecasts</subject><subject>Misdemeanor offenses</subject><subject>P values</subject><subject>Parametric models</subject><subject>Parole</subject><subject>Polynomials</subject><subject>Prisoners</subject><subject>Recidivism</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Statistical models</subject><subject>Studies</subject><subject>U.S.A</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKw0AUBuBBFKxVfAIhuNCFpM59MstSarwURSrobpgkE5k0lzqTqn17UyNdCOLqLM7Hfzg_AMcIjhCE-LLQZiQ53AEDBKUMEWZsFwxgFJFQYIb3wYH3BYSQQygGQM5NZcO6qZfa6cq0zqZB2lRL09r6NXDWL3yga12uvfVBkwfOpDaz79ZXh2Av16U3Rz9zCOZX06fJdTh7iG8m41mYMshgmIg8ZzRJRZYlNIoSSDGBJpF5SiTDGTeCI4I5M1JwzSTJmNCEZDRCkeCcDMFZn7p0zdvK-FZV1qemLHVtmpVXhHNJIyb-hUgKJqSQHTz9BYtm5boXvcLdTUYJ2qSd9yh1jffO5GrpbKXdWiGoNjWrrmbV1dzJi15-2NKs_2Lqdjzt9UmvC982bqsxQ5Sz7y_Cfm99az63e-0WigsimHq-j9WjFDG9E7F6IV9SkJSV</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Bierens, Herman J.</creator><creator>Carvalho, Jose R.</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley &amp; Sons</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>200708</creationdate><title>Semi-nonparametric competing risks analysis of recidivism</title><author>Bierens, Herman J. ; Carvalho, Jose R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5050-b7ff54bc7ddb488b04230eb9fc3952d6e7613265e976a593d57a33d48187663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Criminal arrests</topic><topic>Criminology</topic><topic>Datasets</topic><topic>Econometric models</topic><topic>Economic models</topic><topic>Federal states</topic><topic>Felony offenses</topic><topic>Forecasts</topic><topic>Misdemeanor offenses</topic><topic>P values</topic><topic>Parametric models</topic><topic>Parole</topic><topic>Polynomials</topic><topic>Prisoners</topic><topic>Recidivism</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Statistical models</topic><topic>Studies</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bierens, Herman J.</creatorcontrib><creatorcontrib>Carvalho, Jose R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierens, Herman J.</au><au>Carvalho, Jose R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-nonparametric competing risks analysis of recidivism</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2007-08</date><risdate>2007</risdate><volume>22</volume><issue>5</issue><spage>971</spage><epage>993</epage><pages>971-993</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>In this paper we specify a semi-nonparametric competing risks (SNP-CR) model of recidivism, for misdemeanors and felonies. The model is a bivariate mixed proportional hazard model with Weibull baseline hazards and common unobserved heterogeneity. The distribution of the latter is modeled semi-nonparametrically, using orthonormal Legendre polynomials on the unit interval, and integrated out to make the two durations dependent, conditional on the covariates. The SNP-CR model involved corresponds to a Logit model for felony arrest; hence the validity of the SNP-CR model can be tested by testing the validity of the implied Logit model. The latter will be done by using the integrated conditional moment (ICM) test. In the first instance we have estimated and tested two versions of the SNP-CR model, without and with fixed state effects. However, the ICM test rejects these models. Therefore, we have estimated and tested the model for each state separately. These state models are not rejected by the ICM test. Indeed, the estimation results vary substantially per state.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jae.960</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2007-08, Vol.22 (5), p.971-993
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_miscellaneous_36694857
source Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Criminal arrests
Criminology
Datasets
Econometric models
Economic models
Federal states
Felony offenses
Forecasts
Misdemeanor offenses
P values
Parametric models
Parole
Polynomials
Prisoners
Recidivism
Risk analysis
Risk assessment
Risk management
Statistical models
Studies
U.S.A
title Semi-nonparametric competing risks analysis of recidivism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-nonparametric%20competing%20risks%20analysis%20of%20recidivism&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Bierens,%20Herman%20J.&rft.date=2007-08&rft.volume=22&rft.issue=5&rft.spage=971&rft.epage=993&rft.pages=971-993&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.960&rft_dat=%3Cjstor_proqu%3E25146557%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218754317&rft_id=info:pmid/&rft_jstor_id=25146557&rfr_iscdi=true