Robust Evolutionary Algorithm Design for Socio-economic Simulation

Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2006-11, Vol.28 (4), p.355-370
Hauptverfasser: Amman, Hans M, Poutré, Han, Alkemade, Floortje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 4
container_start_page 355
container_title Computational economics
container_volume 28
creator Amman, Hans M
Poutré, Han
Alkemade, Floortje
description Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006
doi_str_mv 10.1007/s10614-006-9051-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36660592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36660592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</originalsourceid><addsrcrecordid>eNpdkMtOxSAURYnRxOvjA5w1DpyhByhwGfp-xMTEx5hQLijalgqtiX8vzTUOHGwgJ2sR2AgdEDgmAPIkExCkxgACK-AE8w20IFxSrJSsN9ECFJVYglLbaCfnd4ACUbpAZ4-xmfJYXX7FdhpD7E36rk7b15jC-NZVFy6H177yMVVP0YaInY197IKtnkI3tWY29tCWN212-7_7Lnq5unw-v8H3D9e356f32DIiRmwbUTtwSjZLCUyB8GLplZCcE1jxmjHmGqWcWTHBqTcNJd6vBHBGfRlZx3bR0freIcXPyeVRdyFb17amd3HKmglRcEULePgPfI9T6svbNCWc15JQUSCyhmyKOSfn9ZBCV36vCei5Ur2uVJdK9Vyp5sW5WzvJDc7-CR9msLGbJ1-aGbosy_d8mE1mQkldMpQwzjWToN_Gjv0AepaB3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215547126</pqid></control><display><type>article</type><title>Robust Evolutionary Algorithm Design for Socio-economic Simulation</title><source>RePEc</source><source>SpringerLink Journals</source><creator>Amman, Hans M ; Poutré, Han ; Alkemade, Floortje</creator><creatorcontrib>Amman, Hans M ; Poutré, Han ; Alkemade, Floortje</creatorcontrib><description>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-006-9051-5</identifier><language>eng</language><publisher>Dordrecht: Society for Computational Economics</publisher><subject>Algorithms ; Chromosomes ; Computational methods ; Computer science ; Economic models ; Economic theory ; Economics ; Equilibrium ; evolutionary algorithms ; Evolutionary economics ; Genetic algorithms ; Mutation ; Population ; Simulation ; Socioeconomic development ; Socioeconomic factors ; Studies</subject><ispartof>Computational economics, 2006-11, Vol.28 (4), p.355-370</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</citedby><cites>FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3994,27901,27902</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapcompec/v_3a28_3ay_3a2006_3ai_3a4_3ap_3a355-370.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Amman, Hans M</creatorcontrib><creatorcontrib>Poutré, Han</creatorcontrib><creatorcontrib>Alkemade, Floortje</creatorcontrib><title>Robust Evolutionary Algorithm Design for Socio-economic Simulation</title><title>Computational economics</title><description>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006</description><subject>Algorithms</subject><subject>Chromosomes</subject><subject>Computational methods</subject><subject>Computer science</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>evolutionary algorithms</subject><subject>Evolutionary economics</subject><subject>Genetic algorithms</subject><subject>Mutation</subject><subject>Population</subject><subject>Simulation</subject><subject>Socioeconomic development</subject><subject>Socioeconomic factors</subject><subject>Studies</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkMtOxSAURYnRxOvjA5w1DpyhByhwGfp-xMTEx5hQLijalgqtiX8vzTUOHGwgJ2sR2AgdEDgmAPIkExCkxgACK-AE8w20IFxSrJSsN9ECFJVYglLbaCfnd4ACUbpAZ4-xmfJYXX7FdhpD7E36rk7b15jC-NZVFy6H177yMVVP0YaInY197IKtnkI3tWY29tCWN212-7_7Lnq5unw-v8H3D9e356f32DIiRmwbUTtwSjZLCUyB8GLplZCcE1jxmjHmGqWcWTHBqTcNJd6vBHBGfRlZx3bR0freIcXPyeVRdyFb17amd3HKmglRcEULePgPfI9T6svbNCWc15JQUSCyhmyKOSfn9ZBCV36vCei5Ur2uVJdK9Vyp5sW5WzvJDc7-CR9msLGbJ1-aGbosy_d8mE1mQkldMpQwzjWToN_Gjv0AepaB3w</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Amman, Hans M</creator><creator>Poutré, Han</creator><creator>Alkemade, Floortje</creator><general>Society for Computational Economics</general><general>Springer Nature B.V</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200611</creationdate><title>Robust Evolutionary Algorithm Design for Socio-economic Simulation</title><author>Amman, Hans M ; Poutré, Han ; Alkemade, Floortje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Chromosomes</topic><topic>Computational methods</topic><topic>Computer science</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>evolutionary algorithms</topic><topic>Evolutionary economics</topic><topic>Genetic algorithms</topic><topic>Mutation</topic><topic>Population</topic><topic>Simulation</topic><topic>Socioeconomic development</topic><topic>Socioeconomic factors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amman, Hans M</creatorcontrib><creatorcontrib>Poutré, Han</creatorcontrib><creatorcontrib>Alkemade, Floortje</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amman, Hans M</au><au>Poutré, Han</au><au>Alkemade, Floortje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Evolutionary Algorithm Design for Socio-economic Simulation</atitle><jtitle>Computational economics</jtitle><date>2006-11</date><risdate>2006</risdate><volume>28</volume><issue>4</issue><spage>355</spage><epage>370</epage><pages>355-370</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006</abstract><cop>Dordrecht</cop><pub>Society for Computational Economics</pub><doi>10.1007/s10614-006-9051-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2006-11, Vol.28 (4), p.355-370
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_miscellaneous_36660592
source RePEc; SpringerLink Journals
subjects Algorithms
Chromosomes
Computational methods
Computer science
Economic models
Economic theory
Economics
Equilibrium
evolutionary algorithms
Evolutionary economics
Genetic algorithms
Mutation
Population
Simulation
Socioeconomic development
Socioeconomic factors
Studies
title Robust Evolutionary Algorithm Design for Socio-economic Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Evolutionary%20Algorithm%20Design%20for%20Socio-economic%20Simulation&rft.jtitle=Computational%20economics&rft.au=Amman,%20Hans%20M&rft.date=2006-11&rft.volume=28&rft.issue=4&rft.spage=355&rft.epage=370&rft.pages=355-370&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-006-9051-5&rft_dat=%3Cproquest_cross%3E36660592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215547126&rft_id=info:pmid/&rfr_iscdi=true