Robust Evolutionary Algorithm Design for Socio-economic Simulation
Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings...
Gespeichert in:
Veröffentlicht in: | Computational economics 2006-11, Vol.28 (4), p.355-370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 4 |
container_start_page | 355 |
container_title | Computational economics |
container_volume | 28 |
creator | Amman, Hans M Poutré, Han Alkemade, Floortje |
description | Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006 |
doi_str_mv | 10.1007/s10614-006-9051-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36660592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36660592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</originalsourceid><addsrcrecordid>eNpdkMtOxSAURYnRxOvjA5w1DpyhByhwGfp-xMTEx5hQLijalgqtiX8vzTUOHGwgJ2sR2AgdEDgmAPIkExCkxgACK-AE8w20IFxSrJSsN9ECFJVYglLbaCfnd4ACUbpAZ4-xmfJYXX7FdhpD7E36rk7b15jC-NZVFy6H177yMVVP0YaInY197IKtnkI3tWY29tCWN212-7_7Lnq5unw-v8H3D9e356f32DIiRmwbUTtwSjZLCUyB8GLplZCcE1jxmjHmGqWcWTHBqTcNJd6vBHBGfRlZx3bR0freIcXPyeVRdyFb17amd3HKmglRcEULePgPfI9T6svbNCWc15JQUSCyhmyKOSfn9ZBCV36vCei5Ur2uVJdK9Vyp5sW5WzvJDc7-CR9msLGbJ1-aGbosy_d8mE1mQkldMpQwzjWToN_Gjv0AepaB3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215547126</pqid></control><display><type>article</type><title>Robust Evolutionary Algorithm Design for Socio-economic Simulation</title><source>RePEc</source><source>SpringerLink Journals</source><creator>Amman, Hans M ; Poutré, Han ; Alkemade, Floortje</creator><creatorcontrib>Amman, Hans M ; Poutré, Han ; Alkemade, Floortje</creatorcontrib><description>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-006-9051-5</identifier><language>eng</language><publisher>Dordrecht: Society for Computational Economics</publisher><subject>Algorithms ; Chromosomes ; Computational methods ; Computer science ; Economic models ; Economic theory ; Economics ; Equilibrium ; evolutionary algorithms ; Evolutionary economics ; Genetic algorithms ; Mutation ; Population ; Simulation ; Socioeconomic development ; Socioeconomic factors ; Studies</subject><ispartof>Computational economics, 2006-11, Vol.28 (4), p.355-370</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</citedby><cites>FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3994,27901,27902</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapcompec/v_3a28_3ay_3a2006_3ai_3a4_3ap_3a355-370.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Amman, Hans M</creatorcontrib><creatorcontrib>Poutré, Han</creatorcontrib><creatorcontrib>Alkemade, Floortje</creatorcontrib><title>Robust Evolutionary Algorithm Design for Socio-economic Simulation</title><title>Computational economics</title><description>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006</description><subject>Algorithms</subject><subject>Chromosomes</subject><subject>Computational methods</subject><subject>Computer science</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>evolutionary algorithms</subject><subject>Evolutionary economics</subject><subject>Genetic algorithms</subject><subject>Mutation</subject><subject>Population</subject><subject>Simulation</subject><subject>Socioeconomic development</subject><subject>Socioeconomic factors</subject><subject>Studies</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkMtOxSAURYnRxOvjA5w1DpyhByhwGfp-xMTEx5hQLijalgqtiX8vzTUOHGwgJ2sR2AgdEDgmAPIkExCkxgACK-AE8w20IFxSrJSsN9ECFJVYglLbaCfnd4ACUbpAZ4-xmfJYXX7FdhpD7E36rk7b15jC-NZVFy6H177yMVVP0YaInY197IKtnkI3tWY29tCWN212-7_7Lnq5unw-v8H3D9e356f32DIiRmwbUTtwSjZLCUyB8GLplZCcE1jxmjHmGqWcWTHBqTcNJd6vBHBGfRlZx3bR0freIcXPyeVRdyFb17amd3HKmglRcEULePgPfI9T6svbNCWc15JQUSCyhmyKOSfn9ZBCV36vCei5Ur2uVJdK9Vyp5sW5WzvJDc7-CR9msLGbJ1-aGbosy_d8mE1mQkldMpQwzjWToN_Gjv0AepaB3w</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Amman, Hans M</creator><creator>Poutré, Han</creator><creator>Alkemade, Floortje</creator><general>Society for Computational Economics</general><general>Springer Nature B.V</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200611</creationdate><title>Robust Evolutionary Algorithm Design for Socio-economic Simulation</title><author>Amman, Hans M ; Poutré, Han ; Alkemade, Floortje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cb64e0e97b8703906f68f9675510d54333eb99ead3652fab21ffd60532fd36ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Chromosomes</topic><topic>Computational methods</topic><topic>Computer science</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>evolutionary algorithms</topic><topic>Evolutionary economics</topic><topic>Genetic algorithms</topic><topic>Mutation</topic><topic>Population</topic><topic>Simulation</topic><topic>Socioeconomic development</topic><topic>Socioeconomic factors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amman, Hans M</creatorcontrib><creatorcontrib>Poutré, Han</creatorcontrib><creatorcontrib>Alkemade, Floortje</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amman, Hans M</au><au>Poutré, Han</au><au>Alkemade, Floortje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Evolutionary Algorithm Design for Socio-economic Simulation</atitle><jtitle>Computational economics</jtitle><date>2006-11</date><risdate>2006</risdate><volume>28</volume><issue>4</issue><spage>355</spage><epage>370</epage><pages>355-370</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. In the field of ACE, economic simulations often derive parameter settings for the evolutionary algorithm directly from the values of the economic model parameters. In this paper, we compare two important approaches that are dominating ACE research and show that the above practice may hinder the performance of the evolutionary algorithm and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing the two widely used approaches to social learning with respect to their convergence properties and robustness. This leads to new considerations for the methodological aspects of evolutionary algorithm design within the field of ACE. Copyright Springer 2006</abstract><cop>Dordrecht</cop><pub>Society for Computational Economics</pub><doi>10.1007/s10614-006-9051-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2006-11, Vol.28 (4), p.355-370 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_miscellaneous_36660592 |
source | RePEc; SpringerLink Journals |
subjects | Algorithms Chromosomes Computational methods Computer science Economic models Economic theory Economics Equilibrium evolutionary algorithms Evolutionary economics Genetic algorithms Mutation Population Simulation Socioeconomic development Socioeconomic factors Studies |
title | Robust Evolutionary Algorithm Design for Socio-economic Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Evolutionary%20Algorithm%20Design%20for%20Socio-economic%20Simulation&rft.jtitle=Computational%20economics&rft.au=Amman,%20Hans%20M&rft.date=2006-11&rft.volume=28&rft.issue=4&rft.spage=355&rft.epage=370&rft.pages=355-370&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-006-9051-5&rft_dat=%3Cproquest_cross%3E36660592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215547126&rft_id=info:pmid/&rfr_iscdi=true |