Ant colony optimization approach to estimate energy demand of Turkey
This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimizatio...
Gespeichert in:
Veröffentlicht in: | Energy policy 2007-08, Vol.35 (8), p.3984-3990 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3990 |
---|---|
container_issue | 8 |
container_start_page | 3984 |
container_title | Energy policy |
container_volume | 35 |
creator | DURAN TOKSAN, M |
description | This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection. |
doi_str_mv | 10.1016/j.enpol.2007.01.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36640191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301421507000389</els_id><sourcerecordid>1279935831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhaMKJJbCL-ASIcEtYWwnsX3gULVAK63USzlbs86k9ZK1g52tFH493t0KJA7U0tiH-d7ozXNRvGNQM2Ddp21NfgpjzQFkDawGrs6KFVNSVJ2U8kWxAgGsajhrXxWvU9oCQKN0syquLvxc2jAGv5Rhmt3O_cLZBV_iNMWA9qGcQ0kpN3CmkjzF-6XsaYe-L8NQ3u3jD1reFC8HHBO9fXrPi-9fv9xdXlfr2283lxfryrZNO1dyI1Fr3LBWc-z7gQDbjRaoYWgBZWcFyy4JeNf0Kq-1YXIYpOYSO-ptQ-K8-Hiam6393GdXZueSpXFET2GfjOi6Bphmz4KsUUyBggy-_wfchn30eQnDoRWci-M0cYJsDClFGswUcx5xMQzMIX-zNcf8zSF_A8zk_LNqfVJFmsj-kVA-ng7woxEo2nwtuY5KgS6XyjUdelo1RmgN5mHe5XEfnpxisjgOEb116a8TpXjHmcjc5xNH-SMeHUWTrCNvqXeR7Gz64P5r-zdvyrUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205322391</pqid></control><display><type>article</type><title>Ant colony optimization approach to estimate energy demand of Turkey</title><source>RePEc</source><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>DURAN TOKSAN, M</creator><creatorcontrib>DURAN TOKSAN, M</creatorcontrib><description>This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.</description><identifier>ISSN: 0301-4215</identifier><identifier>EISSN: 1873-6777</identifier><identifier>DOI: 10.1016/j.enpol.2007.01.028</identifier><identifier>CODEN: ENPYAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ant colony optimization ; Applied sciences ; Demand ; Economic data ; Economic indicators ; Economic models ; Energy ; Energy demand ; Energy economics ; Energy resources ; Estimation ; Exact sciences and technology ; General, economic and professional studies ; Measurement ; Methodology. Modelling ; Optimization ; Optimization techniques ; Power demand ; Studies ; Turkey</subject><ispartof>Energy policy, 2007-08, Vol.35 (8), p.3984-3990</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Science Ltd. Aug 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</citedby><cites>FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301421507000389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27843,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18826213$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeenepol/v_3a35_3ay_3a2007_3ai_3a8_3ap_3a3984-3990.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>DURAN TOKSAN, M</creatorcontrib><title>Ant colony optimization approach to estimate energy demand of Turkey</title><title>Energy policy</title><description>This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.</description><subject>Ant colony optimization</subject><subject>Applied sciences</subject><subject>Demand</subject><subject>Economic data</subject><subject>Economic indicators</subject><subject>Economic models</subject><subject>Energy</subject><subject>Energy demand</subject><subject>Energy economics</subject><subject>Energy resources</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>Measurement</subject><subject>Methodology. Modelling</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Power demand</subject><subject>Studies</subject><subject>Turkey</subject><issn>0301-4215</issn><issn>1873-6777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>7TQ</sourceid><recordid>eNqFkUFv1DAQhaMKJJbCL-ASIcEtYWwnsX3gULVAK63USzlbs86k9ZK1g52tFH493t0KJA7U0tiH-d7ozXNRvGNQM2Ddp21NfgpjzQFkDawGrs6KFVNSVJ2U8kWxAgGsajhrXxWvU9oCQKN0syquLvxc2jAGv5Rhmt3O_cLZBV_iNMWA9qGcQ0kpN3CmkjzF-6XsaYe-L8NQ3u3jD1reFC8HHBO9fXrPi-9fv9xdXlfr2283lxfryrZNO1dyI1Fr3LBWc-z7gQDbjRaoYWgBZWcFyy4JeNf0Kq-1YXIYpOYSO-ptQ-K8-Hiam6393GdXZueSpXFET2GfjOi6Bphmz4KsUUyBggy-_wfchn30eQnDoRWci-M0cYJsDClFGswUcx5xMQzMIX-zNcf8zSF_A8zk_LNqfVJFmsj-kVA-ng7woxEo2nwtuY5KgS6XyjUdelo1RmgN5mHe5XEfnpxisjgOEb116a8TpXjHmcjc5xNH-SMeHUWTrCNvqXeR7Gz64P5r-zdvyrUb</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>DURAN TOKSAN, M</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>DHY</scope><scope>DON</scope><scope>F28</scope><scope>FQK</scope><scope>FR3</scope><scope>H8D</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20070801</creationdate><title>Ant colony optimization approach to estimate energy demand of Turkey</title><author>DURAN TOKSAN, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ant colony optimization</topic><topic>Applied sciences</topic><topic>Demand</topic><topic>Economic data</topic><topic>Economic indicators</topic><topic>Economic models</topic><topic>Energy</topic><topic>Energy demand</topic><topic>Energy economics</topic><topic>Energy resources</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>Measurement</topic><topic>Methodology. Modelling</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Power demand</topic><topic>Studies</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DURAN TOKSAN, M</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DURAN TOKSAN, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant colony optimization approach to estimate energy demand of Turkey</atitle><jtitle>Energy policy</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>35</volume><issue>8</issue><spage>3984</spage><epage>3990</epage><pages>3984-3990</pages><issn>0301-4215</issn><eissn>1873-6777</eissn><coden>ENPYAC</coden><abstract>This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enpol.2007.01.028</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4215 |
ispartof | Energy policy, 2007-08, Vol.35 (8), p.3984-3990 |
issn | 0301-4215 1873-6777 |
language | eng |
recordid | cdi_proquest_miscellaneous_36640191 |
source | RePEc; PAIS Index; Elsevier ScienceDirect Journals |
subjects | Ant colony optimization Applied sciences Demand Economic data Economic indicators Economic models Energy Energy demand Energy economics Energy resources Estimation Exact sciences and technology General, economic and professional studies Measurement Methodology. Modelling Optimization Optimization techniques Power demand Studies Turkey |
title | Ant colony optimization approach to estimate energy demand of Turkey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20colony%20optimization%20approach%20to%20estimate%20energy%20demand%20of%20Turkey&rft.jtitle=Energy%20policy&rft.au=DURAN%20TOKSAN,%20M&rft.date=2007-08-01&rft.volume=35&rft.issue=8&rft.spage=3984&rft.epage=3990&rft.pages=3984-3990&rft.issn=0301-4215&rft.eissn=1873-6777&rft.coden=ENPYAC&rft_id=info:doi/10.1016/j.enpol.2007.01.028&rft_dat=%3Cproquest_cross%3E1279935831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205322391&rft_id=info:pmid/&rft_els_id=S0301421507000389&rfr_iscdi=true |