Ant colony optimization approach to estimate energy demand of Turkey

This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy policy 2007-08, Vol.35 (8), p.3984-3990
1. Verfasser: DURAN TOKSAN, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3990
container_issue 8
container_start_page 3984
container_title Energy policy
container_volume 35
creator DURAN TOKSAN, M
description This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.
doi_str_mv 10.1016/j.enpol.2007.01.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36640191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301421507000389</els_id><sourcerecordid>1279935831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhaMKJJbCL-ASIcEtYWwnsX3gULVAK63USzlbs86k9ZK1g52tFH493t0KJA7U0tiH-d7ozXNRvGNQM2Ddp21NfgpjzQFkDawGrs6KFVNSVJ2U8kWxAgGsajhrXxWvU9oCQKN0syquLvxc2jAGv5Rhmt3O_cLZBV_iNMWA9qGcQ0kpN3CmkjzF-6XsaYe-L8NQ3u3jD1reFC8HHBO9fXrPi-9fv9xdXlfr2283lxfryrZNO1dyI1Fr3LBWc-z7gQDbjRaoYWgBZWcFyy4JeNf0Kq-1YXIYpOYSO-ptQ-K8-Hiam6393GdXZueSpXFET2GfjOi6Bphmz4KsUUyBggy-_wfchn30eQnDoRWci-M0cYJsDClFGswUcx5xMQzMIX-zNcf8zSF_A8zk_LNqfVJFmsj-kVA-ng7woxEo2nwtuY5KgS6XyjUdelo1RmgN5mHe5XEfnpxisjgOEb116a8TpXjHmcjc5xNH-SMeHUWTrCNvqXeR7Gz64P5r-zdvyrUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205322391</pqid></control><display><type>article</type><title>Ant colony optimization approach to estimate energy demand of Turkey</title><source>RePEc</source><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>DURAN TOKSAN, M</creator><creatorcontrib>DURAN TOKSAN, M</creatorcontrib><description>This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.</description><identifier>ISSN: 0301-4215</identifier><identifier>EISSN: 1873-6777</identifier><identifier>DOI: 10.1016/j.enpol.2007.01.028</identifier><identifier>CODEN: ENPYAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ant colony optimization ; Applied sciences ; Demand ; Economic data ; Economic indicators ; Economic models ; Energy ; Energy demand ; Energy economics ; Energy resources ; Estimation ; Exact sciences and technology ; General, economic and professional studies ; Measurement ; Methodology. Modelling ; Optimization ; Optimization techniques ; Power demand ; Studies ; Turkey</subject><ispartof>Energy policy, 2007-08, Vol.35 (8), p.3984-3990</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Science Ltd. Aug 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</citedby><cites>FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301421507000389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27843,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18826213$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeenepol/v_3a35_3ay_3a2007_3ai_3a8_3ap_3a3984-3990.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>DURAN TOKSAN, M</creatorcontrib><title>Ant colony optimization approach to estimate energy demand of Turkey</title><title>Energy policy</title><description>This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.</description><subject>Ant colony optimization</subject><subject>Applied sciences</subject><subject>Demand</subject><subject>Economic data</subject><subject>Economic indicators</subject><subject>Economic models</subject><subject>Energy</subject><subject>Energy demand</subject><subject>Energy economics</subject><subject>Energy resources</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>General, economic and professional studies</subject><subject>Measurement</subject><subject>Methodology. Modelling</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Power demand</subject><subject>Studies</subject><subject>Turkey</subject><issn>0301-4215</issn><issn>1873-6777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>7TQ</sourceid><recordid>eNqFkUFv1DAQhaMKJJbCL-ASIcEtYWwnsX3gULVAK63USzlbs86k9ZK1g52tFH493t0KJA7U0tiH-d7ozXNRvGNQM2Ddp21NfgpjzQFkDawGrs6KFVNSVJ2U8kWxAgGsajhrXxWvU9oCQKN0syquLvxc2jAGv5Rhmt3O_cLZBV_iNMWA9qGcQ0kpN3CmkjzF-6XsaYe-L8NQ3u3jD1reFC8HHBO9fXrPi-9fv9xdXlfr2283lxfryrZNO1dyI1Fr3LBWc-z7gQDbjRaoYWgBZWcFyy4JeNf0Kq-1YXIYpOYSO-ptQ-K8-Hiam6393GdXZueSpXFET2GfjOi6Bphmz4KsUUyBggy-_wfchn30eQnDoRWci-M0cYJsDClFGswUcx5xMQzMIX-zNcf8zSF_A8zk_LNqfVJFmsj-kVA-ng7woxEo2nwtuY5KgS6XyjUdelo1RmgN5mHe5XEfnpxisjgOEb116a8TpXjHmcjc5xNH-SMeHUWTrCNvqXeR7Gz64P5r-zdvyrUb</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>DURAN TOKSAN, M</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>DHY</scope><scope>DON</scope><scope>F28</scope><scope>FQK</scope><scope>FR3</scope><scope>H8D</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20070801</creationdate><title>Ant colony optimization approach to estimate energy demand of Turkey</title><author>DURAN TOKSAN, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-7b7a99ab1592addfe0a5b93a90f50a76c31301e0264d8016b17ff7927a6edc4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ant colony optimization</topic><topic>Applied sciences</topic><topic>Demand</topic><topic>Economic data</topic><topic>Economic indicators</topic><topic>Economic models</topic><topic>Energy</topic><topic>Energy demand</topic><topic>Energy economics</topic><topic>Energy resources</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>General, economic and professional studies</topic><topic>Measurement</topic><topic>Methodology. Modelling</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Power demand</topic><topic>Studies</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DURAN TOKSAN, M</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DURAN TOKSAN, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant colony optimization approach to estimate energy demand of Turkey</atitle><jtitle>Energy policy</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>35</volume><issue>8</issue><spage>3984</spage><epage>3990</epage><pages>3984-3990</pages><issn>0301-4215</issn><eissn>1873-6777</eissn><coden>ENPYAC</coden><abstract>This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enpol.2007.01.028</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4215
ispartof Energy policy, 2007-08, Vol.35 (8), p.3984-3990
issn 0301-4215
1873-6777
language eng
recordid cdi_proquest_miscellaneous_36640191
source RePEc; PAIS Index; Elsevier ScienceDirect Journals
subjects Ant colony optimization
Applied sciences
Demand
Economic data
Economic indicators
Economic models
Energy
Energy demand
Energy economics
Energy resources
Estimation
Exact sciences and technology
General, economic and professional studies
Measurement
Methodology. Modelling
Optimization
Optimization techniques
Power demand
Studies
Turkey
title Ant colony optimization approach to estimate energy demand of Turkey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20colony%20optimization%20approach%20to%20estimate%20energy%20demand%20of%20Turkey&rft.jtitle=Energy%20policy&rft.au=DURAN%20TOKSAN,%20M&rft.date=2007-08-01&rft.volume=35&rft.issue=8&rft.spage=3984&rft.epage=3990&rft.pages=3984-3990&rft.issn=0301-4215&rft.eissn=1873-6777&rft.coden=ENPYAC&rft_id=info:doi/10.1016/j.enpol.2007.01.028&rft_dat=%3Cproquest_cross%3E1279935831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205322391&rft_id=info:pmid/&rft_els_id=S0301421507000389&rfr_iscdi=true