A novel efficient technique for extracting valid feature information

In this study, we proposed a quick and accurate algorithm for content-based image classification. The proposed method is also used to retrieve similar images from databases. In this paper color and texture information are used to represent image features. The basic idea is to extract color informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2010-03, Vol.37 (3), p.2654-2660
Hauptverfasser: Park, Sang-Sung, Shin, Young-Geun, Jang, Dong-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2660
container_issue 3
container_start_page 2654
container_title Expert systems with applications
container_volume 37
creator Park, Sang-Sung
Shin, Young-Geun
Jang, Dong-Sik
description In this study, we proposed a quick and accurate algorithm for content-based image classification. The proposed method is also used to retrieve similar images from databases. In this paper color and texture information are used to represent image features. The basic idea is to extract color information about global and local features of images. A global color feature is extracted by an RGB model. While, a local color feature is extracted by an HSV model. In the case of a local feature, if it cannot be classified, the result is inaccurate retrieval. A GA (genetic algorithm) is used to extract local features which can be classified. Local features extracted by a GA are optimal representative features. In the experiment, the accuracy of image classification is measured using the proposed algorithm. Also, we compared the previous algorithm with the proposed algorithm in terms of image classification performance. As a result, the proposed algorithm showed higher performance in terms of accuracy.
doi_str_mv 10.1016/j.eswa.2009.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36544534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417409007660</els_id><sourcerecordid>36544534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a55e9555487ae80731498700a66ecdfc4c24157ce6311e8f9108d27c0667110b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5g8sSWc489ILFX5lCqxwGwZ5wKu0qTYboF_T6IyM91w73N67yHkkkHJgKnrdYnpy5UVQF2CKYHxIzJjRvNC6ZofkxnUUheCaXFKzlJaAzANoGfkdkH7YY8dxbYNPmCfaUb_0YfPHdJ2iBS_c3Q-h_6d7l0XGtqiy7uINPTjeuNyGPpzctK6LuHF35yT1_u7l-VjsXp-eFouVoXnnOXCSYm1lFIY7dCA5kzUZqzhlELftF74SjCpPSrOGJq2ZmCaSntQSjMGb3xOrg53t3EY-6VsNyF57DrX47BLlisphORiDFaHoI9DShFbu41h4-KPZWAnYXZtJ2F2EmbB2FHYCN0cIBxf2AeMNk1CPDYhos-2GcJ_-C_MrXO-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36544534</pqid></control><display><type>article</type><title>A novel efficient technique for extracting valid feature information</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Park, Sang-Sung ; Shin, Young-Geun ; Jang, Dong-Sik</creator><creatorcontrib>Park, Sang-Sung ; Shin, Young-Geun ; Jang, Dong-Sik</creatorcontrib><description>In this study, we proposed a quick and accurate algorithm for content-based image classification. The proposed method is also used to retrieve similar images from databases. In this paper color and texture information are used to represent image features. The basic idea is to extract color information about global and local features of images. A global color feature is extracted by an RGB model. While, a local color feature is extracted by an HSV model. In the case of a local feature, if it cannot be classified, the result is inaccurate retrieval. A GA (genetic algorithm) is used to extract local features which can be classified. Local features extracted by a GA are optimal representative features. In the experiment, the accuracy of image classification is measured using the proposed algorithm. Also, we compared the previous algorithm with the proposed algorithm in terms of image classification performance. As a result, the proposed algorithm showed higher performance in terms of accuracy.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2009.08.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Feature information ; Genetic algorithm ; Image retrieval ; Support vector machine</subject><ispartof>Expert systems with applications, 2010-03, Vol.37 (3), p.2654-2660</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a55e9555487ae80731498700a66ecdfc4c24157ce6311e8f9108d27c0667110b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2009.08.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Park, Sang-Sung</creatorcontrib><creatorcontrib>Shin, Young-Geun</creatorcontrib><creatorcontrib>Jang, Dong-Sik</creatorcontrib><title>A novel efficient technique for extracting valid feature information</title><title>Expert systems with applications</title><description>In this study, we proposed a quick and accurate algorithm for content-based image classification. The proposed method is also used to retrieve similar images from databases. In this paper color and texture information are used to represent image features. The basic idea is to extract color information about global and local features of images. A global color feature is extracted by an RGB model. While, a local color feature is extracted by an HSV model. In the case of a local feature, if it cannot be classified, the result is inaccurate retrieval. A GA (genetic algorithm) is used to extract local features which can be classified. Local features extracted by a GA are optimal representative features. In the experiment, the accuracy of image classification is measured using the proposed algorithm. Also, we compared the previous algorithm with the proposed algorithm in terms of image classification performance. As a result, the proposed algorithm showed higher performance in terms of accuracy.</description><subject>Feature information</subject><subject>Genetic algorithm</subject><subject>Image retrieval</subject><subject>Support vector machine</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5g8sSWc489ILFX5lCqxwGwZ5wKu0qTYboF_T6IyM91w73N67yHkkkHJgKnrdYnpy5UVQF2CKYHxIzJjRvNC6ZofkxnUUheCaXFKzlJaAzANoGfkdkH7YY8dxbYNPmCfaUb_0YfPHdJ2iBS_c3Q-h_6d7l0XGtqiy7uINPTjeuNyGPpzctK6LuHF35yT1_u7l-VjsXp-eFouVoXnnOXCSYm1lFIY7dCA5kzUZqzhlELftF74SjCpPSrOGJq2ZmCaSntQSjMGb3xOrg53t3EY-6VsNyF57DrX47BLlisphORiDFaHoI9DShFbu41h4-KPZWAnYXZtJ2F2EmbB2FHYCN0cIBxf2AeMNk1CPDYhos-2GcJ_-C_MrXO-</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Park, Sang-Sung</creator><creator>Shin, Young-Geun</creator><creator>Jang, Dong-Sik</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100315</creationdate><title>A novel efficient technique for extracting valid feature information</title><author>Park, Sang-Sung ; Shin, Young-Geun ; Jang, Dong-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a55e9555487ae80731498700a66ecdfc4c24157ce6311e8f9108d27c0667110b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Feature information</topic><topic>Genetic algorithm</topic><topic>Image retrieval</topic><topic>Support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sang-Sung</creatorcontrib><creatorcontrib>Shin, Young-Geun</creatorcontrib><creatorcontrib>Jang, Dong-Sik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sang-Sung</au><au>Shin, Young-Geun</au><au>Jang, Dong-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel efficient technique for extracting valid feature information</atitle><jtitle>Expert systems with applications</jtitle><date>2010-03-15</date><risdate>2010</risdate><volume>37</volume><issue>3</issue><spage>2654</spage><epage>2660</epage><pages>2654-2660</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>In this study, we proposed a quick and accurate algorithm for content-based image classification. The proposed method is also used to retrieve similar images from databases. In this paper color and texture information are used to represent image features. The basic idea is to extract color information about global and local features of images. A global color feature is extracted by an RGB model. While, a local color feature is extracted by an HSV model. In the case of a local feature, if it cannot be classified, the result is inaccurate retrieval. A GA (genetic algorithm) is used to extract local features which can be classified. Local features extracted by a GA are optimal representative features. In the experiment, the accuracy of image classification is measured using the proposed algorithm. Also, we compared the previous algorithm with the proposed algorithm in terms of image classification performance. As a result, the proposed algorithm showed higher performance in terms of accuracy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2009.08.013</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2010-03, Vol.37 (3), p.2654-2660
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_36544534
source ScienceDirect Journals (5 years ago - present)
subjects Feature information
Genetic algorithm
Image retrieval
Support vector machine
title A novel efficient technique for extracting valid feature information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20efficient%20technique%20for%20extracting%20valid%20feature%20information&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Park,%20Sang-Sung&rft.date=2010-03-15&rft.volume=37&rft.issue=3&rft.spage=2654&rft.epage=2660&rft.pages=2654-2660&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2009.08.013&rft_dat=%3Cproquest_cross%3E36544534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36544534&rft_id=info:pmid/&rft_els_id=S0957417409007660&rfr_iscdi=true