Post-Processing Posterior Predictive p Values

This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2006-09, Vol.101 (475), p.1157-1174
Hauptverfasser: Hjort, Nils Lid, Dahl, Fredrik A, Steinbakk, Gunnhildur Högnadóttir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue 475
container_start_page 1157
container_title Journal of the American Statistical Association
container_volume 101
creator Hjort, Nils Lid
Dahl, Fredrik A
Steinbakk, Gunnhildur Högnadóttir
description This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.
doi_str_mv 10.1198/016214505000001393
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36522928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27590792</jstor_id><sourcerecordid>27590792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</originalsourceid><addsrcrecordid>eNp90FtLwzAUAOAgCs7pHxCEIehbtUmaJnnwQYY3GLgHFd_CaZpIRtfMpFP2702pF1AwLyGc71xyEDrE-RnGUpznuCS4YDnL-4OppFtohBnlGeHF8zYa9SBLQu6ivRgXveJCjFA297HL5sFrE6NrXyb92wTnw2QeTO10597MZDV5gmZt4j7asdBEc_B5j9Hj9dXD9Dab3d_cTS9nmS447TKgwAtpoNaVpkwyAFMJVmBiudQC29rasuLS1hRbQ2VZASUasCG6ysuSFHSMToe6q-BfU99OLV3UpmmgNX4dFS0ZIZKIBI9_wYVfhzbNptLHBcMc94gMSAcfYzBWrYJbQtgonKt-ferv-lLSyWdliBoaG6DVLv5kipwnxZM7Gtwidj58xwlnMgmS4hdD3LXWhyW8-9DUqoNN48NXUfrPHB9724ra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274851718</pqid></control><display><type>article</type><title>Post-Processing Posterior Predictive p Values</title><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis Journals Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Hjort, Nils Lid ; Dahl, Fredrik A ; Steinbakk, Gunnhildur Högnadóttir</creator><creatorcontrib>Hjort, Nils Lid ; Dahl, Fredrik A ; Steinbakk, Gunnhildur Högnadóttir</creatorcontrib><description>This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214505000001393</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Applications ; Calibration of ppp values ; Data analysis ; Data models ; Datasets ; Dipper data ; Distribution theory ; Double simulation ; Exact sciences and technology ; General topics ; Mathematical models ; Mathematics ; Model criticism ; Modeling ; Nonparametric inference ; P values ; Parametric models ; Posterior predictive p values ; Predictions ; Predictive modeling ; Prior construction ; Prior predictive evaluation ; Probability and statistics ; Probability theory and stochastic processes ; Sample size ; Sciences and techniques of general use ; Simulation ; Simulations ; Social science research ; Standard deviation ; Statistical methods ; Statistical models ; Statistical variance ; Statistics ; Surprise ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2006-09, Vol.101 (475), p.1157-1174</ispartof><rights>American Statistical Association 2006</rights><rights>Copyright 2006 American Statistical Association</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</citedby><cites>FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27590792$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27590792$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18079337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Dahl, Fredrik A</creatorcontrib><creatorcontrib>Steinbakk, Gunnhildur Högnadóttir</creatorcontrib><title>Post-Processing Posterior Predictive p Values</title><title>Journal of the American Statistical Association</title><description>This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.</description><subject>Applications</subject><subject>Calibration of ppp values</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Datasets</subject><subject>Dipper data</subject><subject>Distribution theory</subject><subject>Double simulation</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Model criticism</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>P values</subject><subject>Parametric models</subject><subject>Posterior predictive p values</subject><subject>Predictions</subject><subject>Predictive modeling</subject><subject>Prior construction</subject><subject>Prior predictive evaluation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Social science research</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Surprise</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90FtLwzAUAOAgCs7pHxCEIehbtUmaJnnwQYY3GLgHFd_CaZpIRtfMpFP2702pF1AwLyGc71xyEDrE-RnGUpznuCS4YDnL-4OppFtohBnlGeHF8zYa9SBLQu6ivRgXveJCjFA297HL5sFrE6NrXyb92wTnw2QeTO10597MZDV5gmZt4j7asdBEc_B5j9Hj9dXD9Dab3d_cTS9nmS447TKgwAtpoNaVpkwyAFMJVmBiudQC29rasuLS1hRbQ2VZASUasCG6ysuSFHSMToe6q-BfU99OLV3UpmmgNX4dFS0ZIZKIBI9_wYVfhzbNptLHBcMc94gMSAcfYzBWrYJbQtgonKt-ferv-lLSyWdliBoaG6DVLv5kipwnxZM7Gtwidj58xwlnMgmS4hdD3LXWhyW8-9DUqoNN48NXUfrPHB9724ra</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Hjort, Nils Lid</creator><creator>Dahl, Fredrik A</creator><creator>Steinbakk, Gunnhildur Högnadóttir</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20060901</creationdate><title>Post-Processing Posterior Predictive p Values</title><author>Hjort, Nils Lid ; Dahl, Fredrik A ; Steinbakk, Gunnhildur Högnadóttir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Calibration of ppp values</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Datasets</topic><topic>Dipper data</topic><topic>Distribution theory</topic><topic>Double simulation</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Model criticism</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>P values</topic><topic>Parametric models</topic><topic>Posterior predictive p values</topic><topic>Predictions</topic><topic>Predictive modeling</topic><topic>Prior construction</topic><topic>Prior predictive evaluation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Social science research</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Surprise</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Dahl, Fredrik A</creatorcontrib><creatorcontrib>Steinbakk, Gunnhildur Högnadóttir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hjort, Nils Lid</au><au>Dahl, Fredrik A</au><au>Steinbakk, Gunnhildur Högnadóttir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-Processing Posterior Predictive p Values</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>101</volume><issue>475</issue><spage>1157</spage><epage>1174</epage><pages>1157-1174</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/016214505000001393</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2006-09, Vol.101 (475), p.1157-1174
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_miscellaneous_36522928
source Jstor Complete Legacy; Taylor & Francis Journals Complete; JSTOR Mathematics & Statistics
subjects Applications
Calibration of ppp values
Data analysis
Data models
Datasets
Dipper data
Distribution theory
Double simulation
Exact sciences and technology
General topics
Mathematical models
Mathematics
Model criticism
Modeling
Nonparametric inference
P values
Parametric models
Posterior predictive p values
Predictions
Predictive modeling
Prior construction
Prior predictive evaluation
Probability and statistics
Probability theory and stochastic processes
Sample size
Sciences and techniques of general use
Simulation
Simulations
Social science research
Standard deviation
Statistical methods
Statistical models
Statistical variance
Statistics
Surprise
Theory and Methods
title Post-Processing Posterior Predictive p Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-Processing%20Posterior%20Predictive%20p%20Values&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Hjort,%20Nils%20Lid&rft.date=2006-09-01&rft.volume=101&rft.issue=475&rft.spage=1157&rft.epage=1174&rft.pages=1157-1174&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214505000001393&rft_dat=%3Cjstor_proqu%3E27590792%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274851718&rft_id=info:pmid/&rft_jstor_id=27590792&rfr_iscdi=true