Post-Processing Posterior Predictive p Values
This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statisti...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2006-09, Vol.101 (475), p.1157-1174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 475 |
container_start_page | 1157 |
container_title | Journal of the American Statistical Association |
container_volume | 101 |
creator | Hjort, Nils Lid Dahl, Fredrik A Steinbakk, Gunnhildur Högnadóttir |
description | This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp. |
doi_str_mv | 10.1198/016214505000001393 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36522928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27590792</jstor_id><sourcerecordid>27590792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</originalsourceid><addsrcrecordid>eNp90FtLwzAUAOAgCs7pHxCEIehbtUmaJnnwQYY3GLgHFd_CaZpIRtfMpFP2702pF1AwLyGc71xyEDrE-RnGUpznuCS4YDnL-4OppFtohBnlGeHF8zYa9SBLQu6ivRgXveJCjFA297HL5sFrE6NrXyb92wTnw2QeTO10597MZDV5gmZt4j7asdBEc_B5j9Hj9dXD9Dab3d_cTS9nmS447TKgwAtpoNaVpkwyAFMJVmBiudQC29rasuLS1hRbQ2VZASUasCG6ysuSFHSMToe6q-BfU99OLV3UpmmgNX4dFS0ZIZKIBI9_wYVfhzbNptLHBcMc94gMSAcfYzBWrYJbQtgonKt-ferv-lLSyWdliBoaG6DVLv5kipwnxZM7Gtwidj58xwlnMgmS4hdD3LXWhyW8-9DUqoNN48NXUfrPHB9724ra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274851718</pqid></control><display><type>article</type><title>Post-Processing Posterior Predictive p Values</title><source>Jstor Complete Legacy</source><source>Taylor & Francis Journals Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Hjort, Nils Lid ; Dahl, Fredrik A ; Steinbakk, Gunnhildur Högnadóttir</creator><creatorcontrib>Hjort, Nils Lid ; Dahl, Fredrik A ; Steinbakk, Gunnhildur Högnadóttir</creatorcontrib><description>This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/016214505000001393</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Applications ; Calibration of ppp values ; Data analysis ; Data models ; Datasets ; Dipper data ; Distribution theory ; Double simulation ; Exact sciences and technology ; General topics ; Mathematical models ; Mathematics ; Model criticism ; Modeling ; Nonparametric inference ; P values ; Parametric models ; Posterior predictive p values ; Predictions ; Predictive modeling ; Prior construction ; Prior predictive evaluation ; Probability and statistics ; Probability theory and stochastic processes ; Sample size ; Sciences and techniques of general use ; Simulation ; Simulations ; Social science research ; Standard deviation ; Statistical methods ; Statistical models ; Statistical variance ; Statistics ; Surprise ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2006-09, Vol.101 (475), p.1157-1174</ispartof><rights>American Statistical Association 2006</rights><rights>Copyright 2006 American Statistical Association</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</citedby><cites>FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27590792$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27590792$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18079337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Dahl, Fredrik A</creatorcontrib><creatorcontrib>Steinbakk, Gunnhildur Högnadóttir</creatorcontrib><title>Post-Processing Posterior Predictive p Values</title><title>Journal of the American Statistical Association</title><description>This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.</description><subject>Applications</subject><subject>Calibration of ppp values</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Datasets</subject><subject>Dipper data</subject><subject>Distribution theory</subject><subject>Double simulation</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Model criticism</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>P values</subject><subject>Parametric models</subject><subject>Posterior predictive p values</subject><subject>Predictions</subject><subject>Predictive modeling</subject><subject>Prior construction</subject><subject>Prior predictive evaluation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Social science research</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Surprise</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90FtLwzAUAOAgCs7pHxCEIehbtUmaJnnwQYY3GLgHFd_CaZpIRtfMpFP2702pF1AwLyGc71xyEDrE-RnGUpznuCS4YDnL-4OppFtohBnlGeHF8zYa9SBLQu6ivRgXveJCjFA297HL5sFrE6NrXyb92wTnw2QeTO10597MZDV5gmZt4j7asdBEc_B5j9Hj9dXD9Dab3d_cTS9nmS447TKgwAtpoNaVpkwyAFMJVmBiudQC29rasuLS1hRbQ2VZASUasCG6ysuSFHSMToe6q-BfU99OLV3UpmmgNX4dFS0ZIZKIBI9_wYVfhzbNptLHBcMc94gMSAcfYzBWrYJbQtgonKt-ferv-lLSyWdliBoaG6DVLv5kipwnxZM7Gtwidj58xwlnMgmS4hdD3LXWhyW8-9DUqoNN48NXUfrPHB9724ra</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Hjort, Nils Lid</creator><creator>Dahl, Fredrik A</creator><creator>Steinbakk, Gunnhildur Högnadóttir</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20060901</creationdate><title>Post-Processing Posterior Predictive p Values</title><author>Hjort, Nils Lid ; Dahl, Fredrik A ; Steinbakk, Gunnhildur Högnadóttir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a3a749eadcbc3595aaeb85412f79c81fdff6b79fd31fe396ba32ca1e2cb066243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Calibration of ppp values</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Datasets</topic><topic>Dipper data</topic><topic>Distribution theory</topic><topic>Double simulation</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Model criticism</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>P values</topic><topic>Parametric models</topic><topic>Posterior predictive p values</topic><topic>Predictions</topic><topic>Predictive modeling</topic><topic>Prior construction</topic><topic>Prior predictive evaluation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Social science research</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Surprise</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Dahl, Fredrik A</creatorcontrib><creatorcontrib>Steinbakk, Gunnhildur Högnadóttir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hjort, Nils Lid</au><au>Dahl, Fredrik A</au><au>Steinbakk, Gunnhildur Högnadóttir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-Processing Posterior Predictive p Values</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>101</volume><issue>475</issue><spage>1157</spage><epage>1174</epage><pages>1157-1174</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine "measures of surprise" are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/016214505000001393</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2006-09, Vol.101 (475), p.1157-1174 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_miscellaneous_36522928 |
source | Jstor Complete Legacy; Taylor & Francis Journals Complete; JSTOR Mathematics & Statistics |
subjects | Applications Calibration of ppp values Data analysis Data models Datasets Dipper data Distribution theory Double simulation Exact sciences and technology General topics Mathematical models Mathematics Model criticism Modeling Nonparametric inference P values Parametric models Posterior predictive p values Predictions Predictive modeling Prior construction Prior predictive evaluation Probability and statistics Probability theory and stochastic processes Sample size Sciences and techniques of general use Simulation Simulations Social science research Standard deviation Statistical methods Statistical models Statistical variance Statistics Surprise Theory and Methods |
title | Post-Processing Posterior Predictive p Values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-Processing%20Posterior%20Predictive%20p%20Values&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Hjort,%20Nils%20Lid&rft.date=2006-09-01&rft.volume=101&rft.issue=475&rft.spage=1157&rft.epage=1174&rft.pages=1157-1174&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/016214505000001393&rft_dat=%3Cjstor_proqu%3E27590792%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274851718&rft_id=info:pmid/&rft_jstor_id=27590792&rfr_iscdi=true |