A numerical algorithm for the solution of a phase-field model of polycrystalline materials

We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2010-02, Vol.229 (3), p.626-641
Hauptverfasser: Dorr, M.R., Fattebert, J.-L., Wickett, M.E., Belak, J.F., Turchi, P.E.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 3
container_start_page 626
container_title Journal of computational physics
container_volume 229
creator Dorr, M.R.
Fattebert, J.-L.
Wickett, M.E.
Belak, J.F.
Turchi, P.E.A.
description We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton–Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton–Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
doi_str_mv 10.1016/j.jcp.2009.09.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36513762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999109005336</els_id><sourcerecordid>36513762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5dab079a12ce5ecc3fd83c89598d377d7fa51cd1ef0f6fded6836bb75a5cf2453</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLtsdNeapE0fuBoGXzDgRjduQia5cVLSpiYZYf69LTO4FC4cuJxzLvdD6IaSnBJa3Xd5p8acEdLm85T0BC0oaUnGalqdogUhjGZt29JzdBFjRwhpeNks0OcSD7seglXSYem-fLBp22PjA05bwNG7XbJ-wN5gicetjJAZC07j3mtw83r0bq_CPibpnB0A9zJNddLFK3RmJoHro16ij6fH99VLtn57fl0t15kqCU0Z13JD6lZSpoCDUoXRTaGalreNLupa10ZyqjQFQ0xlNOiqKarNpuaSK8NKXlyiu0PvGPz3DmISvY0KnJMD-F0URcVpUVdsMtKDUQUfYwAjxmB7GfaCEjFTFJ2YKIqZopinpFPm9lgu44TIBDkoG_-CjLGmqNnsezj4YPr0x0IQUVkYFGgbQCWhvf3nyi_ht4lO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36513762</pqid></control><display><type>article</type><title>A numerical algorithm for the solution of a phase-field model of polycrystalline materials</title><source>Elsevier ScienceDirect Journals</source><creator>Dorr, M.R. ; Fattebert, J.-L. ; Wickett, M.E. ; Belak, J.F. ; Turchi, P.E.A.</creator><creatorcontrib>Dorr, M.R. ; Fattebert, J.-L. ; Wickett, M.E. ; Belak, J.F. ; Turchi, P.E.A.</creatorcontrib><description>We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton–Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton–Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2009.09.041</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computational techniques ; Exact sciences and technology ; Mathematical methods in physics ; Method of lines ; Newton–Krylov methods ; Phase-field model ; Physics ; Polycrystalline microstructure</subject><ispartof>Journal of computational physics, 2010-02, Vol.229 (3), p.626-641</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5dab079a12ce5ecc3fd83c89598d377d7fa51cd1ef0f6fded6836bb75a5cf2453</citedby><cites>FETCH-LOGICAL-c401t-5dab079a12ce5ecc3fd83c89598d377d7fa51cd1ef0f6fded6836bb75a5cf2453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999109005336$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22283721$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorr, M.R.</creatorcontrib><creatorcontrib>Fattebert, J.-L.</creatorcontrib><creatorcontrib>Wickett, M.E.</creatorcontrib><creatorcontrib>Belak, J.F.</creatorcontrib><creatorcontrib>Turchi, P.E.A.</creatorcontrib><title>A numerical algorithm for the solution of a phase-field model of polycrystalline materials</title><title>Journal of computational physics</title><description>We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton–Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton–Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Method of lines</subject><subject>Newton–Krylov methods</subject><subject>Phase-field model</subject><subject>Physics</subject><subject>Polycrystalline microstructure</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLtsdNeapE0fuBoGXzDgRjduQia5cVLSpiYZYf69LTO4FC4cuJxzLvdD6IaSnBJa3Xd5p8acEdLm85T0BC0oaUnGalqdogUhjGZt29JzdBFjRwhpeNks0OcSD7seglXSYem-fLBp22PjA05bwNG7XbJ-wN5gicetjJAZC07j3mtw83r0bq_CPibpnB0A9zJNddLFK3RmJoHro16ij6fH99VLtn57fl0t15kqCU0Z13JD6lZSpoCDUoXRTaGalreNLupa10ZyqjQFQ0xlNOiqKarNpuaSK8NKXlyiu0PvGPz3DmISvY0KnJMD-F0URcVpUVdsMtKDUQUfYwAjxmB7GfaCEjFTFJ2YKIqZopinpFPm9lgu44TIBDkoG_-CjLGmqNnsezj4YPr0x0IQUVkYFGgbQCWhvf3nyi_ht4lO</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Dorr, M.R.</creator><creator>Fattebert, J.-L.</creator><creator>Wickett, M.E.</creator><creator>Belak, J.F.</creator><creator>Turchi, P.E.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100201</creationdate><title>A numerical algorithm for the solution of a phase-field model of polycrystalline materials</title><author>Dorr, M.R. ; Fattebert, J.-L. ; Wickett, M.E. ; Belak, J.F. ; Turchi, P.E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5dab079a12ce5ecc3fd83c89598d377d7fa51cd1ef0f6fded6836bb75a5cf2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Method of lines</topic><topic>Newton–Krylov methods</topic><topic>Phase-field model</topic><topic>Physics</topic><topic>Polycrystalline microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorr, M.R.</creatorcontrib><creatorcontrib>Fattebert, J.-L.</creatorcontrib><creatorcontrib>Wickett, M.E.</creatorcontrib><creatorcontrib>Belak, J.F.</creatorcontrib><creatorcontrib>Turchi, P.E.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorr, M.R.</au><au>Fattebert, J.-L.</au><au>Wickett, M.E.</au><au>Belak, J.F.</au><au>Turchi, P.E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical algorithm for the solution of a phase-field model of polycrystalline materials</atitle><jtitle>Journal of computational physics</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>229</volume><issue>3</issue><spage>626</spage><epage>641</epage><pages>626-641</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton–Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton–Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2009.09.041</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2010-02, Vol.229 (3), p.626-641
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_36513762
source Elsevier ScienceDirect Journals
subjects Computational techniques
Exact sciences and technology
Mathematical methods in physics
Method of lines
Newton–Krylov methods
Phase-field model
Physics
Polycrystalline microstructure
title A numerical algorithm for the solution of a phase-field model of polycrystalline materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20algorithm%20for%20the%20solution%20of%20a%20phase-field%20model%20of%20polycrystalline%20materials&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dorr,%20M.R.&rft.date=2010-02-01&rft.volume=229&rft.issue=3&rft.spage=626&rft.epage=641&rft.pages=626-641&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2009.09.041&rft_dat=%3Cproquest_cross%3E36513762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36513762&rft_id=info:pmid/&rft_els_id=S0021999109005336&rfr_iscdi=true