Estimating state-contingent production frontiers

Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of agricultural economics 2006-02, Vol.88 (1), p.249-266
Hauptverfasser: O'Donnell, C. J., Griffiths, W. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 1
container_start_page 249
container_title American journal of agricultural economics
container_volume 88
creator O'Donnell, C. J.
Griffiths, W. E.
description Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.
doi_str_mv 10.1111/j.1467-8276.2006.00851.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36508210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3697979</jstor_id><oup_id>10.1111/j.1467-8276.2006.00851.x</oup_id><sourcerecordid>3697979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</originalsourceid><addsrcrecordid>eNqNkFFrHCEUhSW00G2af1DIkoe-zfSqO-o8LmHbJCSEtA0sebmI44SZbsaNOnTz76uZsA-lodUHuX7nHPQQMqdQ0rQ-9yVdCFkoJkXJAEQJoCpa7g7IbA_ekBkAsKKGmr0j70Po0wi0VjMCqxC7Bx274X4eoo62MG7Ikx3ifOtdM5rYuWHe-nxtffhA3rZ6E-zRy3lIbr-sfpyeFZfXX89Pl5eFkYyvC8ttA62uBW8bo6UWtraaGUGlZUxpxphsLEjd0FY0umpVpZJAGSFMpWDB-SH5NOWmRzyONkR86IKxm40erBsDclGBYhT-KaR1XckFy4knfwh7N_ohfQITpUIJRZNITSLjXQjetrj1qR__hBQwF4495l4x94q5cHwuHHfJejVZf3Ub-_TfPlxeLFcXmWWUyTNYpzw-5blx-0pa8bdXfJxcfYjO731c1DLthIsJdyHa3R5r_xOF5LLCs_Ud3oibq0VFv2Eu7XjSt9qhvvddwNvvDCgHCqkvAfw3uYC6Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233168681</pqid></control><display><type>article</type><title>Estimating state-contingent production frontiers</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>Jstor Complete Legacy</source><creator>O'Donnell, C. J. ; Griffiths, W. E.</creator><creatorcontrib>O'Donnell, C. J. ; Griffiths, W. E.</creatorcontrib><description>Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.1111/j.1467-8276.2006.00851.x</identifier><identifier>CODEN: AJAEBA</identifier><language>eng</language><publisher>Malden: Oxford University Press</publisher><subject>Agricultural economics ; Bayesian analysis ; Bayesian theory ; C320 ; Coefficients ; Commercial production ; crop production ; econometric models ; Economic models ; economic policy ; elasticities ; Estimating techniques ; estimation ; finite mixtures ; Firm theory ; Forecasts ; Gibb's sampling ; inefficiency ; input output analysis ; macroeconomics ; Market ; Mathematical independent variables ; Oryza sativa ; Parametric models ; Production ; production economics ; Production efficiency ; Production estimates ; production technology ; Productivity ; Q100 ; Rice ; Risk ; risk assessment ; State of nature ; Stochastic models ; Studies ; Technology ; Uncertainty</subject><ispartof>American journal of agricultural economics, 2006-02, Vol.88 (1), p.249-266</ispartof><rights>Copyright 2006 American Agricultural Economics Association</rights><rights>Copyright 2006 American Agricultural Economics Association 2006</rights><rights>2006 Agricultural and Applied Economics Association</rights><rights>Copyright Blackwell Publishing Feb 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</citedby><cites>FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3697979$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3697979$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,27907,27908,45557,45558,58000,58233</link.rule.ids></links><search><creatorcontrib>O'Donnell, C. J.</creatorcontrib><creatorcontrib>Griffiths, W. E.</creatorcontrib><title>Estimating state-contingent production frontiers</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><addtitle>American Journal of Agricultural Economics</addtitle><description>Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.</description><subject>Agricultural economics</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>C320</subject><subject>Coefficients</subject><subject>Commercial production</subject><subject>crop production</subject><subject>econometric models</subject><subject>Economic models</subject><subject>economic policy</subject><subject>elasticities</subject><subject>Estimating techniques</subject><subject>estimation</subject><subject>finite mixtures</subject><subject>Firm theory</subject><subject>Forecasts</subject><subject>Gibb's sampling</subject><subject>inefficiency</subject><subject>input output analysis</subject><subject>macroeconomics</subject><subject>Market</subject><subject>Mathematical independent variables</subject><subject>Oryza sativa</subject><subject>Parametric models</subject><subject>Production</subject><subject>production economics</subject><subject>Production efficiency</subject><subject>Production estimates</subject><subject>production technology</subject><subject>Productivity</subject><subject>Q100</subject><subject>Rice</subject><subject>Risk</subject><subject>risk assessment</subject><subject>State of nature</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Technology</subject><subject>Uncertainty</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkFFrHCEUhSW00G2af1DIkoe-zfSqO-o8LmHbJCSEtA0sebmI44SZbsaNOnTz76uZsA-lodUHuX7nHPQQMqdQ0rQ-9yVdCFkoJkXJAEQJoCpa7g7IbA_ekBkAsKKGmr0j70Po0wi0VjMCqxC7Bx274X4eoo62MG7Ikx3ifOtdM5rYuWHe-nxtffhA3rZ6E-zRy3lIbr-sfpyeFZfXX89Pl5eFkYyvC8ttA62uBW8bo6UWtraaGUGlZUxpxphsLEjd0FY0umpVpZJAGSFMpWDB-SH5NOWmRzyONkR86IKxm40erBsDclGBYhT-KaR1XckFy4knfwh7N_ohfQITpUIJRZNITSLjXQjetrj1qR__hBQwF4495l4x94q5cHwuHHfJejVZf3Ub-_TfPlxeLFcXmWWUyTNYpzw-5blx-0pa8bdXfJxcfYjO731c1DLthIsJdyHa3R5r_xOF5LLCs_Ud3oibq0VFv2Eu7XjSt9qhvvddwNvvDCgHCqkvAfw3uYC6Xg</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>O'Donnell, C. J.</creator><creator>Griffiths, W. E.</creator><general>Oxford University Press</general><general>American Agricultural Economics Association</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>200602</creationdate><title>Estimating state-contingent production frontiers</title><author>O'Donnell, C. J. ; Griffiths, W. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agricultural economics</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>C320</topic><topic>Coefficients</topic><topic>Commercial production</topic><topic>crop production</topic><topic>econometric models</topic><topic>Economic models</topic><topic>economic policy</topic><topic>elasticities</topic><topic>Estimating techniques</topic><topic>estimation</topic><topic>finite mixtures</topic><topic>Firm theory</topic><topic>Forecasts</topic><topic>Gibb's sampling</topic><topic>inefficiency</topic><topic>input output analysis</topic><topic>macroeconomics</topic><topic>Market</topic><topic>Mathematical independent variables</topic><topic>Oryza sativa</topic><topic>Parametric models</topic><topic>Production</topic><topic>production economics</topic><topic>Production efficiency</topic><topic>Production estimates</topic><topic>production technology</topic><topic>Productivity</topic><topic>Q100</topic><topic>Rice</topic><topic>Risk</topic><topic>risk assessment</topic><topic>State of nature</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Technology</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Donnell, C. J.</creatorcontrib><creatorcontrib>Griffiths, W. E.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Donnell, C. J.</au><au>Griffiths, W. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating state-contingent production frontiers</atitle><jtitle>American journal of agricultural economics</jtitle><stitle>American Journal of Agricultural Economics</stitle><addtitle>American Journal of Agricultural Economics</addtitle><date>2006-02</date><risdate>2006</risdate><volume>88</volume><issue>1</issue><spage>249</spage><epage>266</epage><pages>249-266</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><coden>AJAEBA</coden><abstract>Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.</abstract><cop>Malden</cop><pub>Oxford University Press</pub><doi>10.1111/j.1467-8276.2006.00851.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9092
ispartof American journal of agricultural economics, 2006-02, Vol.88 (1), p.249-266
issn 0002-9092
1467-8276
language eng
recordid cdi_proquest_miscellaneous_36508210
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; Jstor Complete Legacy
subjects Agricultural economics
Bayesian analysis
Bayesian theory
C320
Coefficients
Commercial production
crop production
econometric models
Economic models
economic policy
elasticities
Estimating techniques
estimation
finite mixtures
Firm theory
Forecasts
Gibb's sampling
inefficiency
input output analysis
macroeconomics
Market
Mathematical independent variables
Oryza sativa
Parametric models
Production
production economics
Production efficiency
Production estimates
production technology
Productivity
Q100
Rice
Risk
risk assessment
State of nature
Stochastic models
Studies
Technology
Uncertainty
title Estimating state-contingent production frontiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20state-contingent%20production%20frontiers&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=O'Donnell,%20C.%20J.&rft.date=2006-02&rft.volume=88&rft.issue=1&rft.spage=249&rft.epage=266&rft.pages=249-266&rft.issn=0002-9092&rft.eissn=1467-8276&rft.coden=AJAEBA&rft_id=info:doi/10.1111/j.1467-8276.2006.00851.x&rft_dat=%3Cjstor_proqu%3E3697979%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233168681&rft_id=info:pmid/&rft_jstor_id=3697979&rft_oup_id=10.1111/j.1467-8276.2006.00851.x&rfr_iscdi=true