Estimating state-contingent production frontiers
Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of t...
Gespeichert in:
Veröffentlicht in: | American journal of agricultural economics 2006-02, Vol.88 (1), p.249-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | American journal of agricultural economics |
container_volume | 88 |
creator | O'Donnell, C. J. Griffiths, W. E. |
description | Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest. |
doi_str_mv | 10.1111/j.1467-8276.2006.00851.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36508210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3697979</jstor_id><oup_id>10.1111/j.1467-8276.2006.00851.x</oup_id><sourcerecordid>3697979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</originalsourceid><addsrcrecordid>eNqNkFFrHCEUhSW00G2af1DIkoe-zfSqO-o8LmHbJCSEtA0sebmI44SZbsaNOnTz76uZsA-lodUHuX7nHPQQMqdQ0rQ-9yVdCFkoJkXJAEQJoCpa7g7IbA_ekBkAsKKGmr0j70Po0wi0VjMCqxC7Bx274X4eoo62MG7Ikx3ifOtdM5rYuWHe-nxtffhA3rZ6E-zRy3lIbr-sfpyeFZfXX89Pl5eFkYyvC8ttA62uBW8bo6UWtraaGUGlZUxpxphsLEjd0FY0umpVpZJAGSFMpWDB-SH5NOWmRzyONkR86IKxm40erBsDclGBYhT-KaR1XckFy4knfwh7N_ohfQITpUIJRZNITSLjXQjetrj1qR__hBQwF4495l4x94q5cHwuHHfJejVZf3Ub-_TfPlxeLFcXmWWUyTNYpzw-5blx-0pa8bdXfJxcfYjO731c1DLthIsJdyHa3R5r_xOF5LLCs_Ud3oibq0VFv2Eu7XjSt9qhvvddwNvvDCgHCqkvAfw3uYC6Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233168681</pqid></control><display><type>article</type><title>Estimating state-contingent production frontiers</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>Jstor Complete Legacy</source><creator>O'Donnell, C. J. ; Griffiths, W. E.</creator><creatorcontrib>O'Donnell, C. J. ; Griffiths, W. E.</creatorcontrib><description>Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.1111/j.1467-8276.2006.00851.x</identifier><identifier>CODEN: AJAEBA</identifier><language>eng</language><publisher>Malden: Oxford University Press</publisher><subject>Agricultural economics ; Bayesian analysis ; Bayesian theory ; C320 ; Coefficients ; Commercial production ; crop production ; econometric models ; Economic models ; economic policy ; elasticities ; Estimating techniques ; estimation ; finite mixtures ; Firm theory ; Forecasts ; Gibb's sampling ; inefficiency ; input output analysis ; macroeconomics ; Market ; Mathematical independent variables ; Oryza sativa ; Parametric models ; Production ; production economics ; Production efficiency ; Production estimates ; production technology ; Productivity ; Q100 ; Rice ; Risk ; risk assessment ; State of nature ; Stochastic models ; Studies ; Technology ; Uncertainty</subject><ispartof>American journal of agricultural economics, 2006-02, Vol.88 (1), p.249-266</ispartof><rights>Copyright 2006 American Agricultural Economics Association</rights><rights>Copyright 2006 American Agricultural Economics Association 2006</rights><rights>2006 Agricultural and Applied Economics Association</rights><rights>Copyright Blackwell Publishing Feb 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</citedby><cites>FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3697979$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3697979$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,27907,27908,45557,45558,58000,58233</link.rule.ids></links><search><creatorcontrib>O'Donnell, C. J.</creatorcontrib><creatorcontrib>Griffiths, W. E.</creatorcontrib><title>Estimating state-contingent production frontiers</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><addtitle>American Journal of Agricultural Economics</addtitle><description>Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.</description><subject>Agricultural economics</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>C320</subject><subject>Coefficients</subject><subject>Commercial production</subject><subject>crop production</subject><subject>econometric models</subject><subject>Economic models</subject><subject>economic policy</subject><subject>elasticities</subject><subject>Estimating techniques</subject><subject>estimation</subject><subject>finite mixtures</subject><subject>Firm theory</subject><subject>Forecasts</subject><subject>Gibb's sampling</subject><subject>inefficiency</subject><subject>input output analysis</subject><subject>macroeconomics</subject><subject>Market</subject><subject>Mathematical independent variables</subject><subject>Oryza sativa</subject><subject>Parametric models</subject><subject>Production</subject><subject>production economics</subject><subject>Production efficiency</subject><subject>Production estimates</subject><subject>production technology</subject><subject>Productivity</subject><subject>Q100</subject><subject>Rice</subject><subject>Risk</subject><subject>risk assessment</subject><subject>State of nature</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Technology</subject><subject>Uncertainty</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkFFrHCEUhSW00G2af1DIkoe-zfSqO-o8LmHbJCSEtA0sebmI44SZbsaNOnTz76uZsA-lodUHuX7nHPQQMqdQ0rQ-9yVdCFkoJkXJAEQJoCpa7g7IbA_ekBkAsKKGmr0j70Po0wi0VjMCqxC7Bx274X4eoo62MG7Ikx3ifOtdM5rYuWHe-nxtffhA3rZ6E-zRy3lIbr-sfpyeFZfXX89Pl5eFkYyvC8ttA62uBW8bo6UWtraaGUGlZUxpxphsLEjd0FY0umpVpZJAGSFMpWDB-SH5NOWmRzyONkR86IKxm40erBsDclGBYhT-KaR1XckFy4knfwh7N_ohfQITpUIJRZNITSLjXQjetrj1qR__hBQwF4495l4x94q5cHwuHHfJejVZf3Ub-_TfPlxeLFcXmWWUyTNYpzw-5blx-0pa8bdXfJxcfYjO731c1DLthIsJdyHa3R5r_xOF5LLCs_Ud3oibq0VFv2Eu7XjSt9qhvvddwNvvDCgHCqkvAfw3uYC6Xg</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>O'Donnell, C. J.</creator><creator>Griffiths, W. E.</creator><general>Oxford University Press</general><general>American Agricultural Economics Association</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>200602</creationdate><title>Estimating state-contingent production frontiers</title><author>O'Donnell, C. J. ; Griffiths, W. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723X-e3ed0fa963fdca7a6e9ea2c617e228a2227de07ad1f6da5f8589ea8c66c580433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agricultural economics</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>C320</topic><topic>Coefficients</topic><topic>Commercial production</topic><topic>crop production</topic><topic>econometric models</topic><topic>Economic models</topic><topic>economic policy</topic><topic>elasticities</topic><topic>Estimating techniques</topic><topic>estimation</topic><topic>finite mixtures</topic><topic>Firm theory</topic><topic>Forecasts</topic><topic>Gibb's sampling</topic><topic>inefficiency</topic><topic>input output analysis</topic><topic>macroeconomics</topic><topic>Market</topic><topic>Mathematical independent variables</topic><topic>Oryza sativa</topic><topic>Parametric models</topic><topic>Production</topic><topic>production economics</topic><topic>Production efficiency</topic><topic>Production estimates</topic><topic>production technology</topic><topic>Productivity</topic><topic>Q100</topic><topic>Rice</topic><topic>Risk</topic><topic>risk assessment</topic><topic>State of nature</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Technology</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Donnell, C. J.</creatorcontrib><creatorcontrib>Griffiths, W. E.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Donnell, C. J.</au><au>Griffiths, W. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating state-contingent production frontiers</atitle><jtitle>American journal of agricultural economics</jtitle><stitle>American Journal of Agricultural Economics</stitle><addtitle>American Journal of Agricultural Economics</addtitle><date>2006-02</date><risdate>2006</risdate><volume>88</volume><issue>1</issue><spage>249</spage><epage>266</epage><pages>249-266</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><coden>AJAEBA</coden><abstract>Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.</abstract><cop>Malden</cop><pub>Oxford University Press</pub><doi>10.1111/j.1467-8276.2006.00851.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9092 |
ispartof | American journal of agricultural economics, 2006-02, Vol.88 (1), p.249-266 |
issn | 0002-9092 1467-8276 |
language | eng |
recordid | cdi_proquest_miscellaneous_36508210 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete; Jstor Complete Legacy |
subjects | Agricultural economics Bayesian analysis Bayesian theory C320 Coefficients Commercial production crop production econometric models Economic models economic policy elasticities Estimating techniques estimation finite mixtures Firm theory Forecasts Gibb's sampling inefficiency input output analysis macroeconomics Market Mathematical independent variables Oryza sativa Parametric models Production production economics Production efficiency Production estimates production technology Productivity Q100 Rice Risk risk assessment State of nature Stochastic models Studies Technology Uncertainty |
title | Estimating state-contingent production frontiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20state-contingent%20production%20frontiers&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=O'Donnell,%20C.%20J.&rft.date=2006-02&rft.volume=88&rft.issue=1&rft.spage=249&rft.epage=266&rft.pages=249-266&rft.issn=0002-9092&rft.eissn=1467-8276&rft.coden=AJAEBA&rft_id=info:doi/10.1111/j.1467-8276.2006.00851.x&rft_dat=%3Cjstor_proqu%3E3697979%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233168681&rft_id=info:pmid/&rft_jstor_id=3697979&rft_oup_id=10.1111/j.1467-8276.2006.00851.x&rfr_iscdi=true |