On a p -Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem

In this paper, we show the existence of infinite solutions to the Kirchhoff type quasilinear elliptic equation [ M ( ∫ Ω ( ∣ ∇ u ∣ p + λ ( x ) ∣ u ∣ p ) d x ) ] p − 1 ( − Δ p u + λ ( x ) ∣ u ∣ p − 2 u ) = f ( x , u ) in a smooth bounded domain Ω ⊂ R N with nonlinear boundary condition ∣ ∇ u ∣ p − 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2010, Vol.72 (1), p.302-308
1. Verfasser: Liu, Duchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 1
container_start_page 302
container_title Nonlinear analysis
container_volume 72
creator Liu, Duchao
description In this paper, we show the existence of infinite solutions to the Kirchhoff type quasilinear elliptic equation [ M ( ∫ Ω ( ∣ ∇ u ∣ p + λ ( x ) ∣ u ∣ p ) d x ) ] p − 1 ( − Δ p u + λ ( x ) ∣ u ∣ p − 2 u ) = f ( x , u ) in a smooth bounded domain Ω ⊂ R N with nonlinear boundary condition ∣ ∇ u ∣ p − 2 ∂ u ∂ ν = η ∣ u ∣ p − 2 on ∂ Ω . The method we used here is based on “Fountain Theorem” and “Dual Fountain Theorem”.
doi_str_mv 10.1016/j.na.2009.06.052
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_36497820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X0900830X</els_id><sourcerecordid>36497820</sourcerecordid><originalsourceid>FETCH-LOGICAL-e267t-e6620e5dac21b5bbf313d70bf19efd83d3d92827495ae766ae873469d51b79443</originalsourceid><addsrcrecordid>eNplkD1PwzAURS0EEqWwM3qBLcEfsZ2woUKholKXIrFZL_GL6ip12jhB4t-Tqt2Y3nCPru47hNxzlnLG9dM2DZAKxoqU6ZQpcUEmPDcyUYKrSzJhUotEZfr7mtzEuGWMcSP1hCxWgQLd0-TTd9Vm09Y1xcMAvW8D_fFA5-0QevCBrjfYdrijEBx9HaD5l9ySqxqaiHfnOyVf87f17CNZrt4Xs5dlgkKbPkGtBUPloBK8VGVZSy6dYWXNC6xdLp10hciFyQoFaLQGHL_IdOEUL02RZXJKHk-9-649DBh7u_OxwqaBgO0QrdRZYXLBRvDhDEKsoKk7CJWPdt_5HXS_VghhRMbUyD2fOBxX_3jsbKw8hgqd77DqrWu95cweLdutDWCPli3TdrQs_wCUzG-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36497820</pqid></control><display><type>article</type><title>On a p -Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Duchao</creator><creatorcontrib>Liu, Duchao</creatorcontrib><description>In this paper, we show the existence of infinite solutions to the Kirchhoff type quasilinear elliptic equation [ M ( ∫ Ω ( ∣ ∇ u ∣ p + λ ( x ) ∣ u ∣ p ) d x ) ] p − 1 ( − Δ p u + λ ( x ) ∣ u ∣ p − 2 u ) = f ( x , u ) in a smooth bounded domain Ω ⊂ R N with nonlinear boundary condition ∣ ∇ u ∣ p − 2 ∂ u ∂ ν = η ∣ u ∣ p − 2 on ∂ Ω . The method we used here is based on “Fountain Theorem” and “Dual Fountain Theorem”.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2009.06.052</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-Kirchhoff problem ; Critical points ; Dual Fountain Theorem ; Exact sciences and technology ; Fountain Theorem ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2010, Vol.72 (1), p.302-308</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2009.06.052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22272405$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Duchao</creatorcontrib><title>On a p -Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem</title><title>Nonlinear analysis</title><description>In this paper, we show the existence of infinite solutions to the Kirchhoff type quasilinear elliptic equation [ M ( ∫ Ω ( ∣ ∇ u ∣ p + λ ( x ) ∣ u ∣ p ) d x ) ] p − 1 ( − Δ p u + λ ( x ) ∣ u ∣ p − 2 u ) = f ( x , u ) in a smooth bounded domain Ω ⊂ R N with nonlinear boundary condition ∣ ∇ u ∣ p − 2 ∂ u ∂ ν = η ∣ u ∣ p − 2 on ∂ Ω . The method we used here is based on “Fountain Theorem” and “Dual Fountain Theorem”.</description><subject>[formula omitted]-Kirchhoff problem</subject><subject>Critical points</subject><subject>Dual Fountain Theorem</subject><subject>Exact sciences and technology</subject><subject>Fountain Theorem</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNplkD1PwzAURS0EEqWwM3qBLcEfsZ2woUKholKXIrFZL_GL6ip12jhB4t-Tqt2Y3nCPru47hNxzlnLG9dM2DZAKxoqU6ZQpcUEmPDcyUYKrSzJhUotEZfr7mtzEuGWMcSP1hCxWgQLd0-TTd9Vm09Y1xcMAvW8D_fFA5-0QevCBrjfYdrijEBx9HaD5l9ySqxqaiHfnOyVf87f17CNZrt4Xs5dlgkKbPkGtBUPloBK8VGVZSy6dYWXNC6xdLp10hciFyQoFaLQGHL_IdOEUL02RZXJKHk-9-649DBh7u_OxwqaBgO0QrdRZYXLBRvDhDEKsoKk7CJWPdt_5HXS_VghhRMbUyD2fOBxX_3jsbKw8hgqd77DqrWu95cweLdutDWCPli3TdrQs_wCUzG-c</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Liu, Duchao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>On a p -Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem</title><author>Liu, Duchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e267t-e6620e5dac21b5bbf313d70bf19efd83d3d92827495ae766ae873469d51b79443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-Kirchhoff problem</topic><topic>Critical points</topic><topic>Dual Fountain Theorem</topic><topic>Exact sciences and technology</topic><topic>Fountain Theorem</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Duchao</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Duchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a p -Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem</atitle><jtitle>Nonlinear analysis</jtitle><date>2010</date><risdate>2010</risdate><volume>72</volume><issue>1</issue><spage>302</spage><epage>308</epage><pages>302-308</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, we show the existence of infinite solutions to the Kirchhoff type quasilinear elliptic equation [ M ( ∫ Ω ( ∣ ∇ u ∣ p + λ ( x ) ∣ u ∣ p ) d x ) ] p − 1 ( − Δ p u + λ ( x ) ∣ u ∣ p − 2 u ) = f ( x , u ) in a smooth bounded domain Ω ⊂ R N with nonlinear boundary condition ∣ ∇ u ∣ p − 2 ∂ u ∂ ν = η ∣ u ∣ p − 2 on ∂ Ω . The method we used here is based on “Fountain Theorem” and “Dual Fountain Theorem”.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2009.06.052</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2010, Vol.72 (1), p.302-308
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_36497820
source Elsevier ScienceDirect Journals Complete
subjects [formula omitted]-Kirchhoff problem
Critical points
Dual Fountain Theorem
Exact sciences and technology
Fountain Theorem
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
title On a p -Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20p%20-Kirchhoff%20equation%20via%20Fountain%20Theorem%20and%20Dual%20Fountain%20Theorem&rft.jtitle=Nonlinear%20analysis&rft.au=Liu,%20Duchao&rft.date=2010&rft.volume=72&rft.issue=1&rft.spage=302&rft.epage=308&rft.pages=302-308&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2009.06.052&rft_dat=%3Cproquest_pasca%3E36497820%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36497820&rft_id=info:pmid/&rft_els_id=S0362546X0900830X&rfr_iscdi=true