On time-scaling of risk and the square-root-of-time rule

Many financial applications, such as risk analysis, and derivatives pricing, depend on time scaling of risk. A common method for this purpose is the square-root-of-time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square root of the time horizon. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of banking & finance 2006-10, Vol.30 (10), p.2701-2713
Hauptverfasser: Daníelsson, Jón, Zigrand, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2713
container_issue 10
container_start_page 2701
container_title Journal of banking & finance
container_volume 30
creator Daníelsson, Jón
Zigrand, Jean-Pierre
description Many financial applications, such as risk analysis, and derivatives pricing, depend on time scaling of risk. A common method for this purpose is the square-root-of-time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square root of the time horizon. This paper examines time scaling of quantiles when returns follow a jump diffusion process. We demonstrate that when jumps represent losses, the square-root-of-time rule leads to a systematic underestimation of risk, whereby the degree of underestimation worsens with the time horizon, the jump intensity and the confidence level.
doi_str_mv 10.1016/j.jbankfin.2005.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36485182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378426606000070</els_id><sourcerecordid>36485182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-8bc4fe2190c909dca21736ddcb21f92b115ba3824532caf26b8a0dc64e78b43d3</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVJoU7ar1CWHHKToz9rSXtrMUlbcPAlPQutdrbWZr2ypd2Av31ncdNDLhaMBh6_N9I8Qr5ytuSMq_tu2dVueGnDsBSMrVBcMiY-kAU3WlAltbgiCya1oaVQ6hO5zrljeAyXC2K2QzGGPdDsXR-GP0VsixTyS-GGphh3UOTj5BLQFONIY0tntkhTD5_Jx9b1Gb786zfk9-PD8_on3Wx__Fp_31CvSj1SU_uyBcEr5itWNd4JrqVqGl8L3lai5nxVO2lEuZLCu1ao2jjWoBe0qUvZyBtyd557SPE4QR7tPmQPfe8GiFO2UpVmxY24CAqGT-DOCN6-A7s4pQGXsLwqKyaV0gipM-RTzDlBaw8p7F06Wc7sHLvt7Fvsdo591jF2ND6djQkO4P-7AKCrkXX21UonGV4nLHQqbAGLz9ph1jTjVmgu7W7c47xv53mAIb8GSDb7AIOHJiTwo21iuPSlv4Cxpnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194903667</pqid></control><display><type>article</type><title>On time-scaling of risk and the square-root-of-time rule</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Daníelsson, Jón ; Zigrand, Jean-Pierre</creator><creatorcontrib>Daníelsson, Jón ; Zigrand, Jean-Pierre</creatorcontrib><description>Many financial applications, such as risk analysis, and derivatives pricing, depend on time scaling of risk. A common method for this purpose is the square-root-of-time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square root of the time horizon. This paper examines time scaling of quantiles when returns follow a jump diffusion process. We demonstrate that when jumps represent losses, the square-root-of-time rule leads to a systematic underestimation of risk, whereby the degree of underestimation worsens with the time horizon, the jump intensity and the confidence level.</description><identifier>ISSN: 0378-4266</identifier><identifier>EISSN: 1872-6372</identifier><identifier>DOI: 10.1016/j.jbankfin.2005.10.002</identifier><identifier>CODEN: JBFIDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Estimating techniques ; Financial economics ; Jump diffusions ; Poisson distribution ; Rates of return ; Risk assessment ; Risk regulation ; Square-root-of-time rule ; Studies ; Systemic risk ; Time scaling of risk ; Value-at-risk ; Volatility</subject><ispartof>Journal of banking &amp; finance, 2006-10, Vol.30 (10), p.2701-2713</ispartof><rights>2006 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-8bc4fe2190c909dca21736ddcb21f92b115ba3824532caf26b8a0dc64e78b43d3</citedby><cites>FETCH-LOGICAL-c647t-8bc4fe2190c909dca21736ddcb21f92b115ba3824532caf26b8a0dc64e78b43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbankfin.2005.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejbfina/v_3a30_3ay_3a2006_3ai_3a10_3ap_3a2701-2713.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Daníelsson, Jón</creatorcontrib><creatorcontrib>Zigrand, Jean-Pierre</creatorcontrib><title>On time-scaling of risk and the square-root-of-time rule</title><title>Journal of banking &amp; finance</title><description>Many financial applications, such as risk analysis, and derivatives pricing, depend on time scaling of risk. A common method for this purpose is the square-root-of-time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square root of the time horizon. This paper examines time scaling of quantiles when returns follow a jump diffusion process. We demonstrate that when jumps represent losses, the square-root-of-time rule leads to a systematic underestimation of risk, whereby the degree of underestimation worsens with the time horizon, the jump intensity and the confidence level.</description><subject>Estimating techniques</subject><subject>Financial economics</subject><subject>Jump diffusions</subject><subject>Poisson distribution</subject><subject>Rates of return</subject><subject>Risk assessment</subject><subject>Risk regulation</subject><subject>Square-root-of-time rule</subject><subject>Studies</subject><subject>Systemic risk</subject><subject>Time scaling of risk</subject><subject>Value-at-risk</subject><subject>Volatility</subject><issn>0378-4266</issn><issn>1872-6372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9rGzEQxUVJoU7ar1CWHHKToz9rSXtrMUlbcPAlPQutdrbWZr2ypd2Av31ncdNDLhaMBh6_N9I8Qr5ytuSMq_tu2dVueGnDsBSMrVBcMiY-kAU3WlAltbgiCya1oaVQ6hO5zrljeAyXC2K2QzGGPdDsXR-GP0VsixTyS-GGphh3UOTj5BLQFONIY0tntkhTD5_Jx9b1Gb786zfk9-PD8_on3Wx__Fp_31CvSj1SU_uyBcEr5itWNd4JrqVqGl8L3lai5nxVO2lEuZLCu1ao2jjWoBe0qUvZyBtyd557SPE4QR7tPmQPfe8GiFO2UpVmxY24CAqGT-DOCN6-A7s4pQGXsLwqKyaV0gipM-RTzDlBaw8p7F06Wc7sHLvt7Fvsdo591jF2ND6djQkO4P-7AKCrkXX21UonGV4nLHQqbAGLz9ph1jTjVmgu7W7c47xv53mAIb8GSDb7AIOHJiTwo21iuPSlv4Cxpnw</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Daníelsson, Jón</creator><creator>Zigrand, Jean-Pierre</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20061001</creationdate><title>On time-scaling of risk and the square-root-of-time rule</title><author>Daníelsson, Jón ; Zigrand, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-8bc4fe2190c909dca21736ddcb21f92b115ba3824532caf26b8a0dc64e78b43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Estimating techniques</topic><topic>Financial economics</topic><topic>Jump diffusions</topic><topic>Poisson distribution</topic><topic>Rates of return</topic><topic>Risk assessment</topic><topic>Risk regulation</topic><topic>Square-root-of-time rule</topic><topic>Studies</topic><topic>Systemic risk</topic><topic>Time scaling of risk</topic><topic>Value-at-risk</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daníelsson, Jón</creatorcontrib><creatorcontrib>Zigrand, Jean-Pierre</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of banking &amp; finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daníelsson, Jón</au><au>Zigrand, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On time-scaling of risk and the square-root-of-time rule</atitle><jtitle>Journal of banking &amp; finance</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>30</volume><issue>10</issue><spage>2701</spage><epage>2713</epage><pages>2701-2713</pages><issn>0378-4266</issn><eissn>1872-6372</eissn><coden>JBFIDO</coden><abstract>Many financial applications, such as risk analysis, and derivatives pricing, depend on time scaling of risk. A common method for this purpose is the square-root-of-time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square root of the time horizon. This paper examines time scaling of quantiles when returns follow a jump diffusion process. We demonstrate that when jumps represent losses, the square-root-of-time rule leads to a systematic underestimation of risk, whereby the degree of underestimation worsens with the time horizon, the jump intensity and the confidence level.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jbankfin.2005.10.002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4266
ispartof Journal of banking & finance, 2006-10, Vol.30 (10), p.2701-2713
issn 0378-4266
1872-6372
language eng
recordid cdi_proquest_miscellaneous_36485182
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Estimating techniques
Financial economics
Jump diffusions
Poisson distribution
Rates of return
Risk assessment
Risk regulation
Square-root-of-time rule
Studies
Systemic risk
Time scaling of risk
Value-at-risk
Volatility
title On time-scaling of risk and the square-root-of-time rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20time-scaling%20of%20risk%20and%20the%20square-root-of-time%20rule&rft.jtitle=Journal%20of%20banking%20&%20finance&rft.au=Dan%C3%ADelsson,%20J%C3%B3n&rft.date=2006-10-01&rft.volume=30&rft.issue=10&rft.spage=2701&rft.epage=2713&rft.pages=2701-2713&rft.issn=0378-4266&rft.eissn=1872-6372&rft.coden=JBFIDO&rft_id=info:doi/10.1016/j.jbankfin.2005.10.002&rft_dat=%3Cproquest_cross%3E36485182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194903667&rft_id=info:pmid/&rft_els_id=S0378426606000070&rfr_iscdi=true